A Novel Step-T-Junction Microchannel for the Cell Encapsulation in Monodisperse Alginate-Gelatin Microspheres of Varying Mechanical Properties at High Throughput
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Design and Fabrication of the Microfluidic Device
2.3. Scanning Electron Microscope (SEM) Imaging
2.4. Assessment for Material Viscoelasticity and Stress–Relaxation
2.5. Assessment for Material Stiffness
2.6. Assessment for Material Water Absorption Ability
2.7. Generation of Alginate–Gelatin Microspheres
2.8. HepG2 Cell Culture
2.9. Cell Microencapsulation in Alginate–Gelatin Microspheres
2.10. Cell Viability and Urea Secretion
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, G.; Suresh, S. Cell and Molecular Mechanics of Biological Materials. Nat. Mater. 2003, 2, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Murphy, W.L.; McDevitt, T.C.; Engler, A.J. Materials as Stem Cell Regulators. Nat. Mater. 2014, 13, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Leeuwenburgh, S.C.G.; Li, Y.; Jansen, J.A. The Use of Micro- and Nanospheres as Functional Components for Bone Tissue Regeneration. Tissue Eng. Part B Rev. 2012, 18, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, S.; Cho, Y.; Li, X.-J.; Khademhosseini, A.; Tasoglu, S. Utilizing Stem Cells for Three-Dimensional Neural Tissue Engineering. Biomater. Sci. 2016, 4, 768–784. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, S.; Capretto, L.; Quinci, F.; Piva, R.; Nastruzzi, C. Preparation of Cell-Encapsulation Devices in Confined Microenvironment. Adv. Drug. Deliv. Rev. 2013, 65, 1533–1555. [Google Scholar] [CrossRef]
- Agarwal, P.; Zhao, S.; Bielecki, P.; Rao, W.; Choi, J.K.; Zhao, Y.; Yu, J.; Zhang, W.; He, X. One-Step Microfluidic Generation of Pre-Hatching Embryo-like Core–Shell Microcapsules for Miniaturized 3D Culture of Pluripotent Stem Cells. Lab. Chip 2013, 13, 4525–4533. [Google Scholar] [CrossRef]
- Liu, K.; Deng, Y.; Zhang, N.; Li, S.; Ding, H.; Guo, F.; Liu, W.; Guo, S.; Zhao, X.-Z. Generation of Disk-like Hydrogel Beads for Cell Encapsulation and Manipulation Using a Droplet-Based Microfluidic Device. Microfluid. Nanofluidics 2012, 13, 761–767. [Google Scholar] [CrossRef]
- Mao, A.S.; Shin, J.-W.; Utech, S.; Wang, H.; Uzun, O.; Li, W.; Cooper, M.; Hu, Y.; Zhang, L.; Weitz, D.A.; et al. Deterministic Encapsulation of Single Cells in Thin Tunable Microgels for Niche Modelling and Therapeutic Delivery. Nat. Mater. 2017, 16, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Arun Kumar, R.; Sivashanmugam, A.; Deepthi, S.; Iseki, S.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. Injectable Chitin-Poly(ε-Caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2015, 7, 9399–9409. [Google Scholar] [CrossRef]
- Mazutis, L.; Gilbert, J.; Ung, W.L.; Weitz, D.A.; Griffiths, A.D.; Heyman, J.A. Single-Cell Analysis and Sorting Using Droplet-Based Microfluidics. Nat. Protoc. 2013, 8, 870–891. [Google Scholar] [CrossRef]
- Srinivasan, V.; Pamula, V.K.; Fair, R.B. An Integrated Digital Microfluidic Lab-on-a-Chip for Clinical Diagnostics on Human Physiological Fluids. Lab. Chip 2004, 4, 310. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.M.; Mazutis, L.; Akartuna, I.; Tallapragada, N.; Veres, A.; Li, V.; Peshkin, L.; Weitz, D.A.; Kirschner, M.W. Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell 2015, 161, 1187–1201. [Google Scholar] [CrossRef] [PubMed]
- Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A.R.; Kamitaki, N.; Martersteck, E.M.; et al. Highly Parallel Genome-Wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015, 161, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Wan, J. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery. Polymers 2012, 4, 1084–1108. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Yildirimer, L.; Zhao, H.; Ding, R.; Wang, H.; Cui, W.; Weitz, D. Injectable Stem Cell-Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs. Adv. Funct. Mater. 2016, 26, 2809–2819. [Google Scholar] [CrossRef]
- Agrawal, G.; Ülpenich, A.; Zhu, X.; Möller, M.; Pich, A. Microgel-Based Adaptive Hybrid Capsules with Tunable Shell Permeability. Chem. Mater. 2014, 26, 5882–5891. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, R. Engineered Tissue Development in Biofabricated 3D Geometrical Confinement—A Review. ACS Biomater. Sci. Eng. 2019, 5, 3688–3702. [Google Scholar] [CrossRef]
- Beldjilali-Labro, M.; Garcia Garcia, A.; Farhat, F.; Bedoui, F.; Grosset, J.-F.; Dufresne, M.; Legallais, C. Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges. Materials 2018, 11, 1116. [Google Scholar] [CrossRef]
- Beier, J.P.; Klumpp, D.; Rudisile, M.; Dersch, R.; Wendorff, J.H.; Bleiziffer, O.; Arkudas, A.; Polykandriotis, E.; Horch, R.E.; Kneser, U. Collagen Matrices from Sponge to Nano: New Perspectives for Tissue Engineering of Skeletal Muscle. BMC Biotechnol. 2009, 9, 34. [Google Scholar] [CrossRef]
- Wang, C.X.; Utech, S.; Gopez, J.D.; Mabesoone, M.F.J.; Hawker, C.J.; Klinger, D. Non-Covalent Microgel Particles Containing Functional Payloads: Coacervation of PEG-Based Triblocks via Microfluidics. ACS Appl. Mater. Interfaces 2016, 8, 16914–16921. [Google Scholar] [CrossRef]
- Chatterjea, A.; Meijer, G.; van Blitterswijk, C.; de Boer, J. Clinical Application of Human Mesenchymal Stromal Cells for Bone Tissue Engineering. Stem Cells Int. 2010, 2010, 215625. [Google Scholar] [CrossRef]
- Shao, F.; Yu, L.; Zhang, Y.; An, C.; Zhang, H.; Zhang, Y.; Xiong, Y.; Wang, H. Microfluidic Encapsulation of Single Cells by Alginate Microgels Using a Trigger-Gellified Strategy. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, M.; Chen, Z.; Leong, K.W. Cell-Laden Microfluidic Microgels for Tissue Regeneration. Lab. Chip 2016, 16, 4482–4506. [Google Scholar] [CrossRef] [PubMed]
- Lienemann, P.S.; Rossow, T.; Mao, A.S.; Vallmajo-Martin, Q.; Ehrbar, M.; Mooney, D.J. Single Cell-Laden Protease-Sensitive Microniches for Long-Term Culture in 3D. Lab. Chip 2017, 17, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Terekhov, S.S.; Smirnov, I.V.; Stepanova, A.V.; Bobik, T.V.; Mokrushina, Y.A.; Ponomarenko, N.A.; Belogurov, A.A.; Rubtsova, M.P.; Kartseva, O.V.; Gomzikova, M.O.; et al. Microfluidic Droplet Platform for Ultrahigh-Throughput Single-Cell Screening of Biodiversity. Proc. Natl. Acad. Sci. USA 2017, 114, 2550–2555. [Google Scholar] [CrossRef]
- Good, M.C.; Vahey, M.D.; Skandarajah, A.; Fletcher, D.A. Heald Rebecca Cytoplasmic Volume Modulates Spindle Size During Embryogenesis. Science 2013, 342, 856–860. [Google Scholar] [CrossRef]
- Hazel, J.; Krutkramelis, K.; Mooney, P.; Tomschik, M.; Gerow, K.; Oakey, J.; Gatlin, J.C. Changes in Cytoplasmic Volume Are Sufficient to Drive Spindle Scaling. Science 2013, 342, 853–856. [Google Scholar] [CrossRef]
- Wang, B.L.; Ghaderi, A.; Zhou, H.; Agresti, J.; Weitz, D.A.; Fink, G.R.; Stephanopoulos, G. Microfluidic High-Throughput Culturing of Single Cells for Selection Based on Extracellular Metabolite Production or Consumption. Nat. Biotechnol. 2014, 32, 473–478. [Google Scholar] [CrossRef]
- Tumarkin, E.; Tzadu, L.; Csaszar, E.; Seo, M.; Zhang, H.; Lee, A.; Peerani, R.; Purpura, K.; Zandstra, P.W.; Kumacheva, E. High-Throughput Combinatorial Cell Co-Culture Using Microfluidics. Integr. Biol. 2011, 3, 653–662. [Google Scholar] [CrossRef]
- Cai, B.; Guo, F.; Zhao, L.; He, R.; Chen, B.; He, Z.; Yu, X.; Guo, S.; Xiong, B.; Liu, W.; et al. Disk-like Hydrogel Bead-Based Immunofluorescence Staining toward Identification and Observation of Circulating Tumor Cells. Microfluid. Nanofluidics 2014, 16, 29–37. [Google Scholar] [CrossRef]
- Bong, K.W.; Bong, K.T.; Pregibon, D.C.; Doyle, P.S. Hydrodynamic Focusing Lithography. Angew. Chem. Int. Ed. 2010, 49, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Le Goff, G.C.; Lee, J.; Gupta, A.; Hill, W.A.; Doyle, P.S. High-Throughput Contact Flow Lithography. Adv. Sci. 2015, 2, 1500149. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Meng, H.; Liu, Y.; Narkar, A.; Lee, B.P. Gelatin Microgel Incorporated Poly(Ethylene Glycol)-Based Bioadhesive with Enhanced Adhesive Property and Bioactivity. ACS Appl. Mater. Interfaces 2016, 8, 11980–11989. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.K.; Kim, J.-C. FITC-Dextran Releases from Chitosan Microgel Coated with Poly(N-Isopropylacrylamide-Co-Methacrylic Acid). Polym. Test. 2010, 29, 784–792. [Google Scholar] [CrossRef]
- Ekanem, E.E.; Nabavi, S.A.; Vladisavljević, G.T.; Gu, S. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices. ACS Appl. Mater. Interfaces 2015, 7, 23132–23143. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.-G.; Revzin, A.; Pishko, M.V. Poly(Ethylene Glycol) Hydrogel Microstructures Encapsulating Living Cells. Langmuir 2002, 18, 2459–2462. [Google Scholar] [CrossRef]
- Yeh, J.; Ling, Y.; Karp, J.M.; Gantz, J.; Chandawarkar, A.; Eng, G.; Blumling, J., III; Langer, R.; Khademhosseini, A. Micromolding of Shape-Controlled, Harvestable Cell-Laden Hydrogels. Biomaterials 2006, 27, 5391–5398. [Google Scholar] [CrossRef]
- Annamalai, R.T.; Hong, X.; Schott, N.G.; Tiruchinapally, G.; Levi, B.; Stegemann, J.P. Injectable Osteogenic Microtissues Containing Mesenchymal Stromal Cells Conformally Fill and Repair Critical-Size Defects. Biomaterials 2019, 208, 32–44. [Google Scholar] [CrossRef]
- Franco, C.L.; Price, J.; West, J.L. Development and Optimization of a Dual-Photoinitiator, Emulsion-Based Technique for Rapid Generation of Cell-Laden Hydrogel Microspheres. Acta Biomater. 2011, 7, 3267–3276. [Google Scholar] [CrossRef]
- Choi, C.-H.; Wang, H.; Lee, H.; Kim, J.H.; Zhang, L.; Mao, A.; Mooney, D.J.; Weitz, D.A. One-Step Generation of Cell-Laden Microgels Using Double Emulsion Drops with a Sacrificial Ultra-Thin Oil Shell. Lab. Chip 2016, 16, 1549–1555. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Passive and Active Droplet Generation with Microfluidics: A Review. Lab. Chip 2017, 17, 34–75. [Google Scholar] [CrossRef] [PubMed]
- de Rutte, J.M.; Koh, J.; Di Carlo, D. Scalable High-Throughput Production of Modular Microgels for In Situ Assembly of Microporous Tissue Scaffolds. Adv. Funct. Mater. 2019, 29, 1900071. [Google Scholar] [CrossRef]
- Allazetta, S.; Hausherr, T.C.; Lutolf, M.P. Microfluidic Synthesis of Cell-Type-Specific Artificial Extracellular Matrix Hydrogels. Biomacromolecules 2013, 14, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Steinhilber, D.; Rossow, T.; Wedepohl, S.; Paulus, F.; Seiffert, S.; Haag, R. A Microgel Construction Kit for Bioorthogonal Encapsulation and PH-Controlled Release of Living Cells. Angew. Chem. Int. Ed. 2013, 52, 13538–13543. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, N.; Zhao, L.; Yu, X.; Ji, X.; Liu, W.; Guo, S.; Liu, K.; Zhao, X.-Z. Rapid Purification of Cell Encapsulated Hydrogel Beads from Oil Phase to Aqueous Phase in a Microfluidic Device. Lab. Chip 2011, 11, 4117–4121. [Google Scholar] [CrossRef]
- Zhang, Y.; Ho, Y.-P.; Chiu, Y.-L.; Chan, H.F.; Chlebina, B.; Schuhmann, T.; You, L.; Leong, K.W. A Programmable Microenvironment for Cellular Studies via Microfluidics-Generated Double Emulsions. Biomaterials 2013, 34, 4564–4572. [Google Scholar] [CrossRef]
- Agarwal, P.; Choi, J.K.; Huang, H.; Zhao, S.; Dumbleton, J.; Li, J.; He, X. A Biomimetic Core–Shell Platform for Miniaturized 3D Cell and Tissue Engineering. Part. Part. Syst. Charact. 2015, 32, 809–816. [Google Scholar] [CrossRef]
- Choi, C.-H.; Jung, J.-H.; Rhee, Y.W.; Kim, D.-P.; Shim, S.-E.; Lee, C.-S. Generation of Monodisperse Alginate Microbeads and in Situ Encapsulation of Cell in Microfluidic Device. Biomed. Microdevices 2007, 9, 855–862. [Google Scholar] [CrossRef]
- Tan, W.-H.; Takeuchi, S. Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation. Adv. Mater. 2007, 19, 2696–2701. [Google Scholar] [CrossRef]
- Utech, S.; Prodanovic, R.; Mao, A.S.; Ostafe, R.; Mooney, D.J.; Weitz, D.A. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Adv. Healthc. Mater. 2015, 4, 1628–1633. [Google Scholar] [CrossRef]
- Jiang, Z.; Xia, B.; McBride, R.; Oakey, J. A Microfluidic-Based Cell Encapsulation Platform to Achieve High Long-Term Cell Viability in Photopolymerized PEGNB Hydrogel Microspheres. J. Mater. Chem. B 2017, 5, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Jiang, Z.; Debroy, D.; Li, D.; Oakey, J. Cytocompatible Cell Encapsulation via Hydrogel Photopolymerization in Microfluidic Emulsion Droplets. Biomicrofluidics 2017, 11, 044102. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.-J.; Kim, S.-H.; Baek, J.-Y.; Seong, G.-H.; Lee, S.-H. Hydrodynamic Micro-Encapsulation of Aqueous Fluids and Cells via ‘on the Fly’ Photopolymerization. J. Micromechanics Microengineering 2006, 16, 285–291. [Google Scholar] [CrossRef]
- Liu, Y.; Tottori, N.; Nisisako, T. Microfluidic Synthesis of Highly Spherical Calcium Alginate Hydrogels Based on External Gelation Using an Emulsion Reactant. Sens. Actuators B Chem. 2019, 283, 802–809. [Google Scholar] [CrossRef]
- Bauer, A.; Gu, L.; Kwee, B.; Li, W.A.; Dellacherie, M.; Celiz, A.D.; Mooney, D.J. Hydrogel Substrate Stress-Relaxation Regulates the Spreading and Proliferation of Mouse Myoblasts. Acta Biomater. 2017, 62, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.R.; Frith, J.E.; Gomez, G.A.; Yap, A.S.; Cooper-White, J.J. The Effect of Time-Dependent Deformation of Viscoelastic Hydrogels on Myogenic Induction and Rac1 Activity in Mesenchymal Stem Cells. Biomaterials 2014, 35, 1857–1868. [Google Scholar] [CrossRef]
- Chaudhuri, O. Viscoelastic Hydrogels for 3D Cell Culture. Biomater. Sci. 2017, 5, 1480–1490. [Google Scholar] [CrossRef]
- Elosegui-Artola, A. The Extracellular Matrix Viscoelasticity as a Regulator of Cell and Tissue Dynamics. Cell Dyn. 2021, 72, 10–18. [Google Scholar] [CrossRef]
- Ma, Y.; Han, T.; Yang, Q.; Wang, J.; Feng, B.; Jia, Y.; Wei, Z.; Xu, F. Viscoelastic Cell Microenvironment: Hydrogel-Based Strategy for Recapitulating Dynamic ECM Mechanics. Adv. Funct. Mater. 2021, 31, 2100848. [Google Scholar] [CrossRef]
- Da Ling, S.; Zhang, J.; Chen, Z.; Ma, W.; Du, Y.; Xu, J. Generation of Monodisperse Micro-Droplets within the Stable Narrowing Jetting Regime: Effects of Viscosity and Interfacial Tension. Microfluid. Nanofluidics 2022, 26, 53. [Google Scholar] [CrossRef]
- Andersson, M.; Madgavkar, A.; Stjerndahl, M.; Wu, Y.; Tan, W.; Duran, R.; Niehren, S.; Mustafa, K.; Arvidson, K.; Wennerberg, A. Using Optical Tweezers for Measuring the Interaction Forces between Human Bone Cells and Implant Surfaces: System Design and Force Calibration. Rev. Sci. Instrum. 2007, 78, 074302. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.L.; Ronceray, P.; Xu, G.; Malandrino, A.; Kamm, R.D.; Lenz, M.; Broedersz, C.P.; Guo, M. Cell Contraction Induces Long-Ranged Stress Stiffening in the Extracellular Matrix. Proc. Natl. Acad. Sci. USA 2018, 115, 4075–4080. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, K.; Hu, J.; Zhang, Y.; Dai, Y.; Xia, F. Role of a High Calcium Ion Content in Extending the Properties of Alginate Dual-Crosslinked Hydrogels. J. Mater. Chem. A 2020, 8, 25390–25401. [Google Scholar] [CrossRef]
- Philippova, O.E.; Zaroslov, Y.D.; Khokhlov, A.R.; Wegner, G. Reinforced Superabsorbent Polyacrylamide Hydrogels. Macromol. Symp. 2003, 200, 45–54. [Google Scholar] [CrossRef]
- Xu, J.H.; Li, S.W.; Tan, J.; Luo, G.S. Correlations of Droplet Formation in T-Junction Microfluidic Devices: From Squeezing to Dripping. Microfluid. Nanofluidics 2008, 5, 711–717. [Google Scholar] [CrossRef]
- Xu, J.H.; Li, S.W.; Tan, J.; Wang, Y.J.; Luo, G.S. Preparation of Highly Monodisperse Droplet in a T-Junction Microfluidic Device. AIChE J. 2006, 52, 3005–3010. [Google Scholar] [CrossRef]
- Utada, A.S.; Fernandez-Nieves, A.; Stone, H.A.; Weitz, D.A. Dripping to Jetting Transitions in Coflowing Liquid Streams. Phys. Rev. Lett. 2007, 99, 094502. [Google Scholar] [CrossRef]
- Shyam, S.; Dhapola, B.; Mondal, P. Magnetofluidic-based controlled droplet breakup: Effect of non-uniform force field. J. Fluid Mech. 2022, 944, 68. [Google Scholar] [CrossRef]
- Zhang, J.; Ling, S.D.; Chen, A.; Chen, Z.; Ma, W.; Xu, J. The Liquid–Liquid Flow Dynamics and Droplet Formation in a Modified Step T-Junction Microchannel. AIChE J. 2022, e17611. [Google Scholar] [CrossRef]
- Cui, Y.; Li, Y.; Wang, K.; Deng, J.; Luo, G. High-Throughput Preparation of Uniform Tiny Droplets in Multiple Capillaries Embedded Stepwise Microchannels. J. Flow Chem. 2020, 10, 271–282. [Google Scholar] [CrossRef]
- Cui, Y.; Li, Y.; Wang, K.; Deng, J.; Luo, G. Determination of Dynamic Interfacial Tension during the Generation of Tiny Droplets in the Liquid–Liquid Jetting Flow Regime. Langmuir 2020, 36, 13633–13641. [Google Scholar] [CrossRef] [PubMed]
No. | Alginate Concentration (wt %) | Gelatin Concentration (wt %) | TGM Concentration (mg/mL) | TGM Reaction Time (min) |
---|---|---|---|---|
1 | 0.5 | 7.5 | 5 | 30 |
2 | 0.5 | 7.5 | 5 | 60 |
3 | 0.5 | 7.5 | 5 | 120 |
4 | 0.5 | 7.5 | 10 | 30 |
5 | 0.5 | 7.5 | 10 | 60 |
6 | 0.5 | 7.5 | 10 | 120 |
7 | 0.5 | 7.5 | 20 | 30 |
8 | 0.5 | 7.5 | 20 | 60 |
9 | 0.5 | 7.5 | 20 | 120 |
10 | 1 | 7.5 | 5 | 30 |
11 | 1 | 7.5 | 5 | 60 |
12 | 1 | 7.5 | 5 | 120 |
13 | 1 | 7.5 | 10 | 30 |
14 | 1 | 7.5 | 10 | 60 |
15 | 1 | 7.5 | 10 | 120 |
16 | 1 | 7.5 | 20 | 30 |
17 | 1 | 7.5 | 20 | 60 |
18 | 1 | 7.5 | 20 | 120 |
19 | 2 | 7.5 | 5 | 30 |
20 | 2 | 7.5 | 5 | 60 |
21 | 2 | 7.5 | 5 | 120 |
22 | 2 | 7.5 | 10 | 30 |
23 | 2 | 7.5 | 10 | 60 |
24 | 2 | 7.5 | 10 | 120 |
25 | 2 | 7.5 | 20 | 30 |
26 | 2 | 7.5 | 20 | 60 |
27 | 2 | 7.5 | 20 | 120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, S.D.; Liu, Z.; Ma, W.; Chen, Z.; Du, Y.; Xu, J. A Novel Step-T-Junction Microchannel for the Cell Encapsulation in Monodisperse Alginate-Gelatin Microspheres of Varying Mechanical Properties at High Throughput. Biosensors 2022, 12, 659. https://doi.org/10.3390/bios12080659
Ling SD, Liu Z, Ma W, Chen Z, Du Y, Xu J. A Novel Step-T-Junction Microchannel for the Cell Encapsulation in Monodisperse Alginate-Gelatin Microspheres of Varying Mechanical Properties at High Throughput. Biosensors. 2022; 12(8):659. https://doi.org/10.3390/bios12080659
Chicago/Turabian StyleLing, Si Da, Zhiqiang Liu, Wenjun Ma, Zhuo Chen, Yanan Du, and Jianhong Xu. 2022. "A Novel Step-T-Junction Microchannel for the Cell Encapsulation in Monodisperse Alginate-Gelatin Microspheres of Varying Mechanical Properties at High Throughput" Biosensors 12, no. 8: 659. https://doi.org/10.3390/bios12080659
APA StyleLing, S. D., Liu, Z., Ma, W., Chen, Z., Du, Y., & Xu, J. (2022). A Novel Step-T-Junction Microchannel for the Cell Encapsulation in Monodisperse Alginate-Gelatin Microspheres of Varying Mechanical Properties at High Throughput. Biosensors, 12(8), 659. https://doi.org/10.3390/bios12080659