Terahertz Plasmonic Sensor Based on Metal–Insulator Composite Woven-Wire Mesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. MCWM Materials and Sensing Samples
2.2. Experimental Setup and Spectra Acquisition
3. Results and Discussion
3.1. Characterization of THz Electromagnetic Response of MCWM
3.1.1. Spectral Characteristics
3.1.2. Model Field Performance
3.2. Sensing Performance of MCWMs
3.2.1. Thin-Film Sensing: Thickness Detection
3.2.2. Thin-Film Sensing: Refractive Index Detection
3.2.3. Detection of an Inhomogeneous and a Nonuniform Analytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanan, S.M.; El-Kadri, O.M.; Abu-Yousef, I.A.; Kanan, M.C. Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 2009, 9, 8158–8196. [Google Scholar] [CrossRef]
- Larramendy, M.L.; El-Rifai, W.; Knuutila, S. Comparison of fluorescein isothiocyanate- and Texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization. Cytometry 1998, 31, 174–179. [Google Scholar] [CrossRef]
- Ozaki, H.; McLaughlin, L.W. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer. Nucleic Acids Res. 1992, 20, 5205–5214. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Xie, L.; Yao, Y.; Ying, Y. The Application of Terahertz Spectroscopy to Protein Detection: A Review. Appl. Spectrosc. Rev. 2013, 49, 448–461. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, W.-M. A comprehensive review of lossy mode resonance-based fiber optic sensors. Opt. Lasers Eng. 2018, 100, 47–60. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Rivero, D.S.; Villar, I.D.; Socorro-Leránoz, A.B.; Zhang, X.; Li, K.; Santamaría, E.; Fernández-Irigoyen, J.; Baldini, F.; van den Hove, D.L.A.; et al. Ultrahigh Sensitive Detection of Tau Protein as Alzheimer’s Biomarker via Microfluidics and Nanofunctionalized Optical Fiber Sensors. Adv. Photonics Res. 2022, 2200044. [Google Scholar] [CrossRef]
- Esposito, F.; Sansone, L.; Srivastava, A.; Cusano, A.M.; Campopiano, S.; Giordano, M.; Iadicicco, A. Label-free detection of vitamin D by optical biosensing based on long period fiber grating. Sens. Actuator B Chem. 2021, 347, 130637. [Google Scholar] [CrossRef]
- Lu, S.H.; Zhang, X.; Zhang, Z.Y.; Yang, Y.P.; Xiang, Y.H. Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy. Food Chem. 2016, 211, 494–501. [Google Scholar] [CrossRef]
- Jin, Y.S.; Kim, G.J.; Jeon, S.G. Terahertz dielectric properties of polymers. J. Korean Phys. Soc. 2006, 49, 513–517. [Google Scholar]
- Nie, S.M.; Emery, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef]
- Seo, M.; Park, H.R. Terahertz Biochemical Molecule-Specific Sensors. Adv. Opt. Mater. 2020, 8, 1900662. [Google Scholar] [CrossRef]
- Osawa, M. Surface-Enhanced Infrared Absorption. In Near-Field Optics and Surface Plasmon Polaritons, 1st ed.; Kawata, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Chapter 9; pp. 163–187. [Google Scholar]
- Beffara, F.; Perumal, J.; Mahyuddin, A.P.; Choolani, M.; Khan, S.A.; Auguste, J.-L.; Vedraine, S.; Humbert, G.; Dinish, U.S.; Olivo, M. Development of highly reliable SERS-active photonic crystalfiber probe and its application in the detection of ovariancancer biomarker in cyst fluid. J. Biophotonics 2020, 13, e201960120. [Google Scholar] [CrossRef]
- Sansone, L.; Campopiano, S.; Pannico, M.; Giordano, M.; Musto, P.; Iadicicco, A. Photonic bandgap influence on the SERS effect in metal-dielectric colloidal crystals optical fiber probe. Sens. Actuator B Chem. 2021, 345, 130149. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef]
- Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917–924. [Google Scholar] [CrossRef]
- Seto, H.; Kamba, S.; Kondo, T.; Hasegawa, M.; Nashima, S.; Ehara, Y.; Ogawa, Y.; Hoshino, Y.; Miura, Y. Metal mesh device sensor immobilized with a trimethoxysilane-containing glycopolymer for label-free detection of proteins and bacteria. ACS Appl. Mater. Interfaces 2014, 6, 13234–13241. [Google Scholar] [CrossRef]
- Suzuki, T.; Kondo, T.; Ogawa, Y.; Kamba, S.; Kondo, N. Detection of SiO2 Thin Layer by Using a Metallic Mesh Sensor. IEEE Sens. J. 2013, 13, 4972–4976. [Google Scholar] [CrossRef]
- Yahiaoui, R.; Strikwerda, A.C.; Jepsen, P.U. Terahertz Plasmonic Structure with Enhanced Sensing Capabilities. IEEE Sens. J. 2016, 16, 2484–2488. [Google Scholar] [CrossRef]
- Jáuregui-López, I.; Rodriguez-Ulibarri, P.; Kuznetsov, S.A.; Nikolaev, N.A.; Beruete, M. THz Sensing With Anomalous Extraordinary Optical Transmission Hole Arrays. Sensors 2018, 18, 3848. [Google Scholar] [CrossRef]
- Yoshida, S.; Kato, E.; Suizu, K.; Nakagomi, Y.; Ogawa, Y.; Kawase, K. Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh. Appl. Phys. Express 2009, 2, 012301. [Google Scholar] [CrossRef]
- Chen, W.; Huang, Y.; Zhou, R.; Xie, L.; Ying, Y. Rapid analysis of a doxycycline hydrochloride solution by metallic mesh device-based reflection terahertz spectroscopy. Opt. Express 2020, 28, 12001–12010. [Google Scholar]
- Tanaka, T.; Akazawa, M.; Sano, E.; Tanaka, M.; Miyamaru, F.; Hangyo, M. Transmission Characteristics through Two-Dimensional Periodic Hole Arrays Perforated in Perfect Conductors. Jpn. J. Appl. Phys. 2006, 45, 4058–4063. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Ghaemi, H.F.; Thio, T.; Grupp, D.E.; Ebbesen, T.W.; Lezec, H.J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 1998, 58, 6779. [Google Scholar] [CrossRef]
- Jog, J.P. Crystallization of Polyethyleneterephthalate. J. Macromol. Sci. Part C Polym. Rev. 1995, 35, 531–553. [Google Scholar] [CrossRef]
- Polymer Properties Database, Poly (Ethylene Terephthalate) (PET). Available online: https://polymerdatabase.com/Commercial%20Polymers/PET.html (accessed on 20 August 2021).
- Rogalin, V.E.; Kaplunov, I.A.; Kropotov, G.I. Optical Materials for the THz Range. Opt. Spectrosc. 2018, 125, 1053–1064. [Google Scholar] [CrossRef]
- Kitai, M.S.; Nazarov, M.M.; Sapozhnikov, D.A.; Bykov, V.I.; Bermeshev, M.V.; Bulgakova, S.A.; Shklyaruk, B.F. Structure-Sensitive Maxima in the Absorption Spectra of Polymers in the Terahertz Frequency Range. Radiophys. Quantum Electron. 2015, 57, 881–890. [Google Scholar] [CrossRef]
- Damarla, G.; Venkatesh, M.; Chaudhary, A.K. Temperature-dependent terahertz spectroscopy and refractive index measurements of aqua-soluble and plastic explosives. Appl. Opt. 2018, 57, 8743–8750. [Google Scholar] [CrossRef]
- Jeong, J.O.; Park, J.S.; Kim, E.J.; Jeong, S.I.; Lee, J.Y.; Lim, Y.M. Preparation of Radiation Cross-Linked Poly(Acrylic Acid) Hydrogel Containing Metronidazole with Enhanced Antibacterial Activity. Int. J. Mol. Sci. 2020, 21, 187. [Google Scholar] [CrossRef]
- Saleh, B.E.A.; Teich, M.C. Electromagnetic optics. In Fundamentals of Photonics, 1st ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2001; Chapter 5; p. 179. [Google Scholar]
- Lu, J.-Y.; You, B.; Wang, J.-Y.; Jhuo, S.-S.; Hung, T.-Y.; Yu, C.-P. Volatile Gas Sensing through Terahertz Pipe Waveguide. Sensors 2020, 20, 6268. [Google Scholar] [CrossRef] [PubMed]
- Saleh, B.E.A.; Teich, M.C. Resonator optics. In Fundamentals of Photonics, 1st ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2001; Chapter 9; p. 313. [Google Scholar]
- Navarro-Cía, M.; Pacheco-Peña, V.; Kuznetsov, S.A.; Beruete, M. Extraordinary THz transmission with a small beam spot: The Leaky Wave Mechanism. Adv. Opt. Mater. 2018, 6, 1701312. [Google Scholar] [CrossRef]
- Van Exter, M.; Fattinger, C.; Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 1989, 14, 1128–1130. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, R.; Khodzitskiy, M.K.; Zhang, T. Comparison of Mathematical Models for the Calculation of Optical Properties of Composite Medium in the Terahertz Regime. In Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019. [Google Scholar]
- Park, S.J.; Jun, S.W.; Kim, A.R.; Ahn, Y.H. Terahertz metamaterial sensing on polystyrene microbeads: Shape dependence. Opt. Mater. Express 2015, 5, 2150–2155. [Google Scholar] [CrossRef]
- Wilmink, G.J.; Ibey, B.L.; Rivest, B.D.; Grundt, J.E.; Roach, W.P.; Tongue, T.D.; Schulkin, B.J.; Laman, N.; Peralta, X.G.; Roth, C.C.; et al. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. J. Biomed. Opt. 2011, 16, 047006. [Google Scholar] [CrossRef]
W (μm) | D (μm) | Λ (μm) | Open Ratio (%) | |
---|---|---|---|---|
Large-pore MCWM | 249 | 120 | 738 | 45 |
Small-pore MCWM | 90 | 64 | 308 | 30 |
Pure PAA | PAA + Lactose | Electrolyte Salts | PAA + PE Sphere | |
---|---|---|---|---|
Weight sensitivity | 8.82 × 10−3 THz/μg∙mm2 | 3.64 × 10−3 THz/μg∙mm2 | 3.14 × 10−3 THz/μg∙mm2 | −8.4 × 10−3 THz/μg∙mm2 |
Molar sensitivity | 0.02912 THz/pmole/mm2 | 0.00187 THz/pmole/mm2 | 0.20078 THz/μmole/mm2 | – |
Weight LOD | 732.43 ng/mm2 | 2.01 μg/mm2 | 2.36 μg/mm2 | – |
Molar LOD | 221.84 fmole/mm2 | 3.91 pmole/mm2 | 36.96 nmole/mm2 | – |
Reference | f0 (THz) | f0 Region | n | h (μm) | FS (Original) | FS = Δf/(n∙h) (GHz/RIU∙mm) | LOD | LOD (λ0) |
---|---|---|---|---|---|---|---|---|
[22] | 0.52 | THz | 1–2 | 50 | 128 GHz/RIU | 2560 | 50 μm | 1/11 |
[22] | 0.52 | THz | 1.41 | 5–50 | 1 GHz/μm | 709 | 5 μm | 1/115 |
[23] | 0.85 | THz | 2 | 13 | 0.8 | 1540 | 3 μm | 1/118 |
[24] | 0.95 | THz | 1.7 | 3–5 | – | – | 1 μm | 1/316 |
[21] | 10 | Middle IR | 2.5 | 0.03–0.5 | 295 GHz/μm | 404,000 | 0.1 μm | 1/300 |
[20] | 100 | Near IR | – | – | 5 GHz/fmol∙mm−2 | – | 10 fmol/mm2 | – |
MCWM (the present work) | 0.637 | THz | 1.3 | 5–53 | 8.26 GHz/μm 29.12 × 10−3 GHz/fmol∙mm−2 | 5350 | 0.886 μm; 221.84 fmol/mm2 | 1/531 |
MCWM (the present work) | 0.637 | THz | 1.32–1.46 | 16–35 | 547 GHz/RIU 1.87 × 10−3 GHz/fmol∙mm−2 | 5350 | 1.34 × 10−2 RIU | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.-Y.; Chen, P.-L.; You, B. Terahertz Plasmonic Sensor Based on Metal–Insulator Composite Woven-Wire Mesh. Biosensors 2022, 12, 669. https://doi.org/10.3390/bios12090669
Lu J-Y, Chen P-L, You B. Terahertz Plasmonic Sensor Based on Metal–Insulator Composite Woven-Wire Mesh. Biosensors. 2022; 12(9):669. https://doi.org/10.3390/bios12090669
Chicago/Turabian StyleLu, Ja-Yu, Po-Lun Chen, and Borwen You. 2022. "Terahertz Plasmonic Sensor Based on Metal–Insulator Composite Woven-Wire Mesh" Biosensors 12, no. 9: 669. https://doi.org/10.3390/bios12090669
APA StyleLu, J. -Y., Chen, P. -L., & You, B. (2022). Terahertz Plasmonic Sensor Based on Metal–Insulator Composite Woven-Wire Mesh. Biosensors, 12(9), 669. https://doi.org/10.3390/bios12090669