A Detection-Service-Mobile Three-Terminal Software Platform for Point-of-Care Infectious Disease Detection System
Abstract
:1. Introduction
- The automatic process control of “sample in, result out” can classify the fluorescence amplification curve to realize abnormal curve recognition, calculate the Ct value of the positive curve, and generate the detection report.
- We solved the problem of real-time collection, sharing, management, and analysis of the data generated by the system.
- With mobile internet, database and geographic information system (GIS) technology provides users with an infectious disease distribution map display, early warning, and other functions.
2. Materials and Methods
2.1. Architecture and Workflow of the System
2.2. Fluorescence Data Analysis
2.2.1. Data Collection
2.2.2. Feature Selection and Normalization
2.2.3. Selection of Classifiers
2.2.4. Performance Evaluation
2.2.5. Positive Curve Fitting and Ct Value Solution
2.2.6. Algorithm Verification Experiment
- The qPCR experiment was performed in StepOnePlusTM Real-Time PCR Systems of Applied Biosystems. The instrument application software is StepOneTM software (version 2.3). The virus used is hepatitis B virus (HBV) nucleic acid assay kit (Z-HD-2002-02, Shanghai Zhijiang Biotechnology Co., Ltd.) with standard serum samples from the kit with HBV concentration of 5 × 103 IU/mL~5 × 108 IU/mL.
- After the experiment, we exported the original data of the StepOneTM software. The raw data is shown in Spreadsheets S2.
- We used the instrument’s original fluorescence data and this paper’s algorithm program to calculate the Ct value.
- We sorted out the results and performed a comparative analysis.
3. Results
3.1. User Interface
3.1.1. The User Interface of the Detection Software
3.1.2. The User Interface of the Mobile Software
3.2. The Result of Fluorescence Amplification Curve Analysis
3.2.1. Classifier Selection and Performance Evaluation
3.2.2. The Solution Results of the Ct Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gai, J.; Ma, L.; Li, G.; Zhu, M.; Qiao, P.; Li, X.; Zhang, H.; Zhang, Y.; Chen, Y.; Ji, W.; et al. A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential. MedComm 2021, 2, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ren, L.; Tan, X.; Chu, H.; Chen, J.; Zhang, Y.; Zhou, X. Removal of ofloxacin with biofuel production by oleaginous microalgae Scenedesmus obliquus—ScienceDirect. Bioresour. Technol. 2020, 315, 123738(1)–123738(7). [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ouyang, M.; Wang, H.; Zhang, B.; Guang, W.; Liu, R.; Li, X.; Shih, T.; Li, Z.; Cao, J.; et al. A cyclic peptide retards the proliferation of DU145 prostate cancer cells in vitro and in vivo through inhibition of FGFR2. MedComm 2020, 1, 362–375. [Google Scholar] [CrossRef]
- Qi, J.L.; He, J.R.; Liu, C.B.; Jin, S.M.; Gao, R.Y.; Yang, X.; Bai, H.M.; Ma, Y.B. Pulmonary Staphylococcus aureus infection regulates breast cancer cell metastasis via neutrophil extracellular traps (NETs) formation. MedComm 2020, 1, 188–201. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T.; Yang, G.; Deng, Y.; Mou, X.; He, N. A simple AuNPs-based colorimetric aptasensor for chlorpyrifos detection. Chin. Chem. Lett. 2022, 33, 1913–1916. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, Y.; He, N.; Deng, Y.; Jin, L. Discussion of the protein characterization techniques used in the identification of membrane protein targets corresponding to tumor cell aptamers. Chin. Chem. Lett. 2020, 32, 40–47. [Google Scholar] [CrossRef]
- Zhao, H.; Su, E.; Huang, L.; Zai, Y.; Liu, Y.; Chen, Z.; Li, S.; Jin, L.; He, N. Washing-free chemiluminescence immunoassay for rapid detection of cardiac troponin Ⅰ in whole blood samples. Chin. Chem. Lett. 2022, 33, 743–746. [Google Scholar] [CrossRef]
- Höglund, K.; Palmqvist, H.; Ringmark, S.; Svensson, A. Quantification of normetanephrine in canine urine using ELISA: Evaluation of factors affecting results. J. Vet. Diagn. Investig. 2022, 34, 28–35. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, H.; Chen, H.; Chen, Z.; Liu, Y.; Jin, L.; Deng, Y.; Li, S.; He, N. Advances in Aptamer Screening and Drug Delivery. J. Biomed. Nanotechnol. 2020, 16, 763–788. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.; Li, T.; Deng, Y.; Chen, Z.; He, N. Selection of a DNA aptamer for the development of fluorescent aptasensor for carbaryl detection. Chin. Chem. Lett. 2021, 32, 1957–1962. [Google Scholar] [CrossRef]
- Liu, M.; Xi, L.; Tan, T.; Jin, L.; Wang, Z.; He, N. A novel aptamer-based histochemistry assay for specific diagnosis of clinical breast cancer tissues. Chin. Chem. Lett. 2021, 32, 1726–1730. [Google Scholar] [CrossRef]
- He, Z.; Tong, Z.; Tan, B.; He, X.; Zhang, T.; Guo, Y.; Jin, L.; He, N.; Li, S.; Chen, Z. Rapid Detection of DNA Methylation with a Novel Real-Time Fluorescence Recombinase-Aided Amplification Assay. J. Biomed. Nanotechnol. 2021, 17, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, J.; Yang, H.; Chen, S.; Ma, G.; Zhang, X.; Zhu, M.; Yu, J.; Singh, R.; Zhang, Y.; et al. Ultrasensitive detection of gastric cancer plasma microRNAs via magnetic beads-based chemiluminescent assay. J. Biomed. Nanotechnol. 2017, 13, 1272–1280. [Google Scholar] [CrossRef]
- Mou, X.; Sheng, D.; Chen, Z.; Liu, M.; Liu, Y.; Deng, Y.; Xu, K.; Hou, R.; Zhao, J.; Zhu, Y.; et al. In-situ mutation detection by magnetic beads-probe based on single base extension and its application in genotyping of hepatitis B virus pre-C region 1896nt locus single nucleotide polymorphisms. J. Biomed. Nanotechnol. 2019, 15, 2393–2400. [Google Scholar] [CrossRef]
- Tang, Y.; Ali, Z.; Dai, J.; Liu, X.; Wu, Y.; Chen, Z.; He, N.; Li, S.; Wang, L. Single-nucleotide polymorphism genotyping of exoS in pseudomonas aeruginosa using dual-color fluorescence hybridization and magnetic separation. J. Biomed. Nanotechnol. 2018, 14, 206–214. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, T.; Yang, H.; Li, T.; Nie, L.; Mou, X.; Deng, Y.; He, N.; Li, Z.; Wang, L.; et al. A portable multi-channel turbidity system for rapid detection of pathogens by loop-mediated isothermal amplification. J. Biomed. Nanotechnol. 2018, 14, 198–205. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, T.; Chen, Z.; Jin, L.; Wu, Z.; Yan, J.; Zhao, X.; Cai, L.; Deng, Y.; Guo, Y.; et al. The point-of-care-testing of nucleic acids by chip, cartridge and paper sensors. Chin. Chem. Lett. 2021, 32, 3675–3686. [Google Scholar] [CrossRef]
- Kuupiel, D.; Bawontuo, V.; Mashamba-Thompson, T.P.J.D. Improving the accessibility and efficiency of point-of-care diagnostics Services in low-and Middle-Income Countries: Lean and agile supply chain management. Diagnostics 2017, 7, 58. [Google Scholar] [CrossRef]
- Shimetani, N.J.M.M.J. Potential of Next-generation POCT in Infectious Disease Rapid Test. Med. Mycol. J. 2017, 58, J91–J94. [Google Scholar] [CrossRef]
- Chu, S.; Wang, E.; Du, L. Analysis on the Development Trend and Problems of Medical Device Industry in China. Chin. J. Pharm. 2017, 48, 930–935. [Google Scholar]
- Mardanly, S.G. Current state and development trends of domestic medical device market for in vitro diagnostics in the segment of diagnostic reagents and their kits. Klin. Lab. Diagn. 2019, 64, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Song, H.B.; Zhu, Y.Y. The in vitro diagnostics industry in China. View 2020, 1, e5. [Google Scholar] [CrossRef]
- Chen, X.; Liu, H.; Wang, H.; Zhao, X.; Maosheng, J.I.; Dong, Y.; Zhang, L.; Center, C.B. Analysis and treatment of abnormal amplification curve of PCR in blood nucleic acid screening. Chin. J. Blood Transfus. 2019, 32, 696–699. [Google Scholar]
- Prasad, P.H.; Aakash, N.J.; Venithraa, G.; Bala, A.; Ganesan, M.; Karthika, R. EEG Signal Analysis Using Machine Learning Techniques. J. Adv. Res. Dyn. Control. Syst. 2020, 12, 207–214. [Google Scholar] [CrossRef]
- Bin Heyat, M.B.; Akhtar, F.; Khan, A.; Noor, A.; Benjdira, B.; Qamar, Y.; Abbas, S.J.; Lai, D. A Novel Hybrid Machine Learning Classification for the Detection of Bruxism Patients Using Physiological Signals. Appl. Sci. 2020, 10, 7410. [Google Scholar] [CrossRef]
- Bin Heyat, M.B.; Akhtar, F.; Ansari, M.A.; Khan, A.; Alkahtani, F.; Khan, H.; Lai, D. Progress in Detection of Insomnia Sleep Disorder: A Comprehensive Review. Curr. Drug Targets 2020, 22, 672–684. [Google Scholar] [CrossRef]
- Callison, K.; Ward, J. Associations Between Individual Demographic Characteristics and Involuntary Health Care Delays as a Result of COVID-19: Study examines associations between individual demographic characteristics and involuntary health care delays as a result of COVID-19. Health Aff. 2021, 40, 837–843. [Google Scholar] [CrossRef]
- Han, B.A.; Schmidt, J.P.; Alexander, L.W.; Bowden, S.E.; Hayman, D.T.; Drake, J.M. Undiscovered Bat Hosts of Filoviruses. PLoS Negl. Trop. Dis. 2016, 10, e0004815. [Google Scholar] [CrossRef]
- Jang, B.; Lee, M.; Kim, J.W. PEACOCK: A Map-Based Multitype Infectious Disease Outbreak Information System. IEEE Access 2019, 7, 82956–82969. [Google Scholar] [CrossRef]
- Untergasser, A.; Ruijter, J.M.; Benes, V.; van den Hoff, M.J. Web-based LinRegPCR: Application for the visualization and analysis of (RT)-qPCR amplification and melting data. BMC Bioinform. 2021, 22, 298. [Google Scholar] [CrossRef]
- Liao, P.; Fang, Y.; Chen, H.; Wu, Y.; Deng, Y.; Chen, Z.; He, N.; Liu, H.; Li, S. QuickAnalysis: A software designed and developed for a portable on-site pathogen detection system. J. Nanosci. Nanotechnol. 2019, 19, 2054–2059. [Google Scholar] [CrossRef] [PubMed]
- Parastar, H.; Shaye, H. MVC app: A smartphone application for performing chemometric methods. Chemom. Intell. Lab. Syst. 2015, 147, 105–110. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | Curve | Type | Operation | Abnormal Cause [23] |
---|---|---|---|---|
class_A | Figure 5a | positive | Ct value calculation | —— |
class_B | Figure 5b | |||
class_C | Figure 5c | negative | —— | —— |
class_D | Figure 5d | abnormal | warning abnormal cause | suspected cross-contamination of the template or low sample concentration |
class_E | Figure 5e | severe evaporation of samples or probe degradation | ||
class_F | Figure 5f | slight sample evaporation |
Classifier | Precision | Recall | Accuracy | F1 |
---|---|---|---|---|
SVC | 0.99 | 0.99 | 0.99 | 0.99 |
LRC | 0.97 | 0.97 | 0.96 | 0.96 |
kNN | 0.99 | 0.99 | 0.98 | 0.98 |
DTC | 0.96 | 0.95 | 0.96 | 0.96 |
LDA | 0.93 | 0.92 | 0.92 | 0.92 |
Reference | Year | Sample | Method | Accuracy |
---|---|---|---|---|
Chen [23] | 2019 | fluorescence amplification curve | manual | 0.99 |
Liao [31] | 2019 | fluorescence amplification curve | machine learning | 0.94 |
this paper | 2022 | fluorescence amplification curve | machine learning | 0.99 |
Method | Sample A | Sample B | Sample C | Sample D | Sample E | Sample F | Sample G | Sample H |
---|---|---|---|---|---|---|---|---|
StepOnePlusTM | 35.99 | 30.12 | 25.07 | 34.97 | 32.41 | 35.21 | 34.59 | 35.92 |
algorithm | 35.70 | 29.71 | 24.52 | 34.53 | 31.61 | 34.50 | 33.96 | 35.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Fang, Y.; Liu, H.; Wang, Y.; Ji, M.; Chen, Z.; Chen, H.; Li, S.; Deng, Y.; Jin, L.; et al. A Detection-Service-Mobile Three-Terminal Software Platform for Point-of-Care Infectious Disease Detection System. Biosensors 2022, 12, 684. https://doi.org/10.3390/bios12090684
Su X, Fang Y, Liu H, Wang Y, Ji M, Chen Z, Chen H, Li S, Deng Y, Jin L, et al. A Detection-Service-Mobile Three-Terminal Software Platform for Point-of-Care Infectious Disease Detection System. Biosensors. 2022; 12(9):684. https://doi.org/10.3390/bios12090684
Chicago/Turabian StyleSu, Xiangyi, Yile Fang, Haoran Liu, Yue Wang, Minjie Ji, Zhu Chen, Hui Chen, Song Li, Yan Deng, Lian Jin, and et al. 2022. "A Detection-Service-Mobile Three-Terminal Software Platform for Point-of-Care Infectious Disease Detection System" Biosensors 12, no. 9: 684. https://doi.org/10.3390/bios12090684
APA StyleSu, X., Fang, Y., Liu, H., Wang, Y., Ji, M., Chen, Z., Chen, H., Li, S., Deng, Y., Jin, L., Zhang, Y., Ramalingam, M., & He, N. (2022). A Detection-Service-Mobile Three-Terminal Software Platform for Point-of-Care Infectious Disease Detection System. Biosensors, 12(9), 684. https://doi.org/10.3390/bios12090684