Sandwich-Type Electrochemiluminescence Immunosensor Based on CDs@dSiO2 Nanoparticles as Nanoprobe and Co-Reactant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Dendritic SiO2
2.3. Synthesis of CDs
2.4. Preparation of CDs@dSiO2 NPs
2.5. Bioconjugation of CDs@dSiO2 NPs with Ab2
2.6. Fabrication of the ECL Immunosensor
3. Results
3.1. Characterization of the CDs@dSiO2 NPs
3.2. The Feasibility of CDs@dSiO2 NPs as Co-Reactants of Ru(bpy)32+
3.3. Construction of the ECL Biosensor
3.4. Optimization of Experimental Conditions
3.5. ECL Detection of HCG
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, C.; Cao, Y.; Gou, X.D.; Zhu, J.J. Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 2020, 92, 431–454. [Google Scholar] [CrossRef]
- Hu, L.Z.; Xu, G.B. Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304. [Google Scholar] [CrossRef]
- Deng, S.Y.; Ju, H.X. Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 2013, 138, 43–61. [Google Scholar] [CrossRef]
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef]
- Khoshfetrat, S.M.; Hashemi, P.; Afkhami, A.; Hajian, A.; Bagheri, H. Cascade electrochemiluminescence-based integrated graphitic carbon nitride-encapsulated metal-organic framework nanozyme for prostate-specific antigen biosensing. Sens. Actuators B Chem. 2021, 348, 130658. [Google Scholar] [CrossRef]
- Du, F.X.; Chen, Y.Q.; Meng, C.D.; Lou, B.H.; Zhang, W.; Xu, G.B. Recent advances in electrochemiluminescence immunoassay based on multiple-signal strategy. Curr. Opin Electrochem. 2021, 28, 100725. [Google Scholar] [CrossRef]
- Khoshfetrat, S.M.; Dorraji, P.S.; Shayan, M.; Khatami, F.; Omidfar, K. Smartphone-Based Electrochemiluminescence for Visual Simultaneous Detection of RASSF1A and SLC5A8 Tumor Suppressor Gene Methylation in Thyroid Cancer Patient Plasma. Anal. Chem. 2022, 94, 8005–8013. [Google Scholar] [CrossRef]
- Nasrollahpour, H.; Khalilzadeh, B.; Naseri, A.; Sillanpaa, M.; Chia, C.H. Homogeneous Electrochemiluminescence in the Sensors Game: What have we learned from past experiments? Anal. Chem. 2022, 94, 349–365. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Ma, Q. Recent advances in visual electrochemiluminescence analysis. J. Anal. Test. 2020, 4, 92–106. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Qi, W.J.; Xu, G.B. Recent advances in electrochemiluminescence. Chem. Soc. Rev. 2015, 44, 3117–3142. [Google Scholar] [CrossRef]
- Zhou, J.J.; Li, Y.; Wang, W.J.; Tan, X.C.; Lu, Z.C.; Han, H.Y. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens. Bioelectron. 2020, 164, 112332. [Google Scholar] [CrossRef]
- Fabrizio, E.F.; Prieto, I.; Bard, A.J. Hydrocarbon cation radical formation by reduction of peroxydisulfate. J. Am. Chem. Soc. 2000, 122, 4996–4997. [Google Scholar] [CrossRef]
- Swanick, K.N.; Ladouceur, S.; Zysman-Colman, E.; Ding, Z.F. Bright electrochemiluminescence of iridium(III) complexes. Chem. Commun. 2012, 48, 3179–3181. [Google Scholar] [CrossRef]
- Miao, W.J. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 2008, 108, 2506–2553. [Google Scholar] [CrossRef]
- Xie, X.Y.; Wang, H.J.; Zhang, L.; Liu, Y.T.; Chai, Y.Q.; Yuan, Y.L.; Yuan, R. A novel electrochemiluminescence immunosensor based on functional beta-cyclodextrin-ferrocene host-guest complex with multiple signal amplification. Sens. Actuators B Chem. 2018, 258, 1146–1151. [Google Scholar] [CrossRef]
- Ke, H.; Sha, H.F.; Wang, Y.F.; Guo, W.W.; Zhang, X.; Wang, Z.M.; Huang, C.S.; Jia, N.Q. Electrochemiluminescence resonance energy transfer system between GNRs and Ru(bpy)32+: Application in magnetic aptasensor for beta-amyloid. Biosens. Bioelectron. 2018, 100, 266–273. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, W.L.; Wei, H.F.; Ma, C.; Lin, Y.H.; Zhu, J.J. Stable and monochromatic all-inorganic halide perovskite assisted by hollow carbon nitride nanosphere for ratiometric electrochemiluminescence bioanalysis. Anal. Chem. 2020, 92, 4123–4130. [Google Scholar] [CrossRef]
- Qi, H.L.; Zhang, C.X. Electrogenerated chemiluminescence biosensing. Anal. Chem. 2020, 92, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Knight, A.W. A review of recent trends in analytical applications of electrogenerated chemiluminescence. TrAC Trends Anal. Chem. 1999, 18, 47–62. [Google Scholar] [CrossRef]
- Lee, W.Y. Tris (2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science. Mikrochim. Acta. 1997, 127, 19–39. [Google Scholar] [CrossRef]
- Leland, J.K.; Powell, M.J. Electrogenerated chemiluminescence—An oxidative-reduction type ECL reaction sequence using tripropyl amine. J. Electrochem. Soc. 1990, 137, 3127–3131. [Google Scholar] [CrossRef]
- Chang, M.M.; Saji, T.; Bard, A.J. Electrogenerated chemiluminescence. 30. electrochemical oxidation of oxalate ion in presence of luminescers in acetonitrile solutions. J. Am. Chem. Soc. 1977, 99, 5399–5403. [Google Scholar] [CrossRef]
- Ma, L.; Wu, N.; Liu, Y.; Ran, X.Q.; Xiao, D.B. Self-electrochemiluminescence of poly[9,9-bis(3′-(N,N-dimethyl amino) propyl)-2,7-fluorene]-alt-2,7-(9,9-dioctylfluorene)] and resonance energy transfer to aluminum tris(8-quinolinolate). Electrochim. Acta 2019, 297, 826–832. [Google Scholar] [CrossRef]
- Arcudi, F.; Dordevic, L.; Prato, M. Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nanodots. Angew. Chem. Int. Ed. 2016, 55, 2107–2112. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.H.; Yu, J.G.; Liu, G. Fabrication of carbon quantum dots and their application for efficient detecting Ru(bpy)32+ in the solution. Sens. Actuators B Chem. 2013, 181, 209–214. [Google Scholar] [CrossRef]
- Li, L.B.; Yu, B.; Zhang, X.P.; You, T.Y. A novel electrochemiluminescence sensor based on Ru(bpy)32+/N-Doped carbon nanodots system for the detection of bisphenol A. Anal. Chim. Acta 2015, 895, 104–111. [Google Scholar] [CrossRef]
- Carrara, S.; Arcudi, F.; Prato, M.; De Cola, L. Amine-rich nitrogen-doped carbon nanodots as a platform for self-enhancing electrochemiluminescence. Angew. Chem. Int. Ed. 2017, 56, 4757–4761. [Google Scholar] [CrossRef]
- Li, L.B.; Liu, D.; Mao, H.P.; You, T.Y. Multifunctional solid-state electrochemiluminescence sensing platform based on poly(ethylenimine) capped N-doped carbon dots as novel co-reactant. Biosens. Bioelectron. 2017, 89, 489–495. [Google Scholar] [CrossRef]
- Huang, L.; Liao, T.; Wang, J.; Ao, L.J.; Su, W.; Hu, J. Brilliant pitaya-type silica colloids with central-radial and high-density quantum dots incorporation for ultrasensitive fluorescence immunoassays. Adv. Funct. Mater. 2018, 28, 1705380. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, F.; Liu, C.Y. Organic-inorganic hybrid functional carbon dot gel glasses. Adv. Mater. 2012, 24, 1716–1721. [Google Scholar] [CrossRef]
- Dong, H.; Han, T.-T.; Ren, L.-L.; Ding, S.-N. Novel sandwich-structured electrochemiluminescence immunosensing platform via CdTe quantum dots-embedded mesoporous silica nanospheres as enhanced signal labels and Fe3O4@SiO2@PS nanocomposites as magnetic separable carriers. J. Electroanal. Chem. 2017, 806, 32–40. [Google Scholar] [CrossRef]
- Yan, F.Y.; Zou, Y.; Wang, M.; Mu, X.L.; Yang, N.; Chen, L. Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sens. Actuators B Chem. 2014, 192, 488–495. [Google Scholar] [CrossRef]
- Wang, X.; Xue, C.H.; Yang, D.; Jia, S.T.; Ding, Y.R.; Lei, L.; Gao, K.Y.; Jia, T.T. Modification of a nitrocellulose membrane with nanofibers for sensitivity enhancement in lateral flow test strips. Rsc Advances. 2021, 11, 26493–26501. [Google Scholar] [CrossRef]
- Wen, G.Q.; Liang, X.J.; Liu, Q.Y.; Liang, A.H.; Jiang, Z.L. A novel nanocatalytic SERS detection of trace human chorionic gonadotropin using labeled-free Vitoria blue 4R as molecular probe. Biosens. Bioelectron. 2016, 85, 450–456. [Google Scholar] [CrossRef]
- Lei, J.; Jing, T.; Zhou, T.; Zhou, Y.; Wu, W.; Mei, S.; Zhou, Y. A simple and sensitive immunoassay for the determination of human chorionic gonadotropin by graphene-based chemiluminescence resonance energy transfer. Biosens. Bioelectron. 2014, 54, 72–77. [Google Scholar] [CrossRef]
- Zhang, A.; Guo, W.W.; Ke, H.; Zhang, X.; Zhang, H.; Huang, C.S.; Yang, D.P.; Jia, N.Q.; Cui, D.X. Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin. Biosens. Bioelectron. 2018, 101, 219–226. [Google Scholar] [CrossRef]
- Qin, D.M.; Jiang, X.H.; Mo, G.C.; Zheng, X.F.; Deng, B.Y. Electrochemiluminescence immunoassay of human chorionic gonadotropin using silver carbon quantum dots and functionalized polymer nanospheres. Microchim. Acta. 2020, 187, 1–13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.-L.; Wang, X.-Y.; Zhang, Q.; Bao, N.; Ding, S.-N. Sandwich-Type Electrochemiluminescence Immunosensor Based on CDs@dSiO2 Nanoparticles as Nanoprobe and Co-Reactant. Biosensors 2023, 13, 133. https://doi.org/10.3390/bios13010133
Chen A-L, Wang X-Y, Zhang Q, Bao N, Ding S-N. Sandwich-Type Electrochemiluminescence Immunosensor Based on CDs@dSiO2 Nanoparticles as Nanoprobe and Co-Reactant. Biosensors. 2023; 13(1):133. https://doi.org/10.3390/bios13010133
Chicago/Turabian StyleChen, A-Ling, Xiao-Yan Wang, Qing Zhang, Ning Bao, and Shou-Nian Ding. 2023. "Sandwich-Type Electrochemiluminescence Immunosensor Based on CDs@dSiO2 Nanoparticles as Nanoprobe and Co-Reactant" Biosensors 13, no. 1: 133. https://doi.org/10.3390/bios13010133
APA StyleChen, A. -L., Wang, X. -Y., Zhang, Q., Bao, N., & Ding, S. -N. (2023). Sandwich-Type Electrochemiluminescence Immunosensor Based on CDs@dSiO2 Nanoparticles as Nanoprobe and Co-Reactant. Biosensors, 13(1), 133. https://doi.org/10.3390/bios13010133