Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Ti3C2 Nanosheets
2.3. Tailoring the Self-Assembly of Peptides into PNSs
2.4. Synthesis of CuS-PNSs/Ti3C2 Nanohybrids
2.5. Electrochemical Detection of H2O2
2.6. Characterization Techniques
3. Results
3.1. Characterizations of Ti3C2 and PNSs
3.2. Characterizations of CuS-PNSs/Ti3C2 Nanohybrids
3.3. CuS-PNSs/Ti3C2 Nanohybrid-Based Electrochemical Detection of H2O2
3.4. Selectivity and Stability of CuS-PNS/Ti3C2 Electrochemical Platform
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapeinos, C.; Larranaga, A.; Sarasua, J.R.; Pandit, A. Functionalised collagen spheres reduce H2O2 mediated apoptosis by scavenging overexpressed ROS. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2397–2405. [Google Scholar] [CrossRef]
- Chen, L.F.; Xing, S.H.; Lei, Y.L.; Chen, Q.S.; Zou, Z.; Quan, K.; Qing, Z.H.; Liu, J.W.; Yang, R.H. A Glucose-Powered Activatable Nanozyme Breaking pH and H2O2 Limitations for Treating Diabetic Infections. Angew. Chem. Int. Ed. 2021, 60, 23534–23539. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Cheng, X.W.; Song, H.Y.; Ma, J.H.; Pan, P.P.; Elzatahry, A.A.; Su, J.C.; Deng, Y.H. 3D Interconnected Mesoporous Alumina with Loaded Hemoglobin as a Highly Active Electrochemical Biosensor for H2O2. Adv. Healthc. Mater. 2018, 7, 1800149. [Google Scholar] [CrossRef] [PubMed]
- Seven, F.; Golcez, T.; Sen, M. Nanoporous carbon-fiber microelectrodes for sensitive detection of H2O2 and dopamine. J. Electroanal. Chem. 2020, 864, 114104. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Cirone, J.; Chen, A.C. Fluorescent Fe3O4 Quantum Dots for H2O2 Detection. ACS Appl. Nano Mater. 2019, 2, 2076–2085. [Google Scholar] [CrossRef]
- Tantawi, O.; Baalbaki, A.; El Asmar, R.; Ghauch, A. A rapid and economical method for the quantification of hydrogen peroxide (H2O2) using a modified HPLC apparatus. Sci. Total Environ. 2019, 654, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.T.; Ding, Y.M.; Li, M.L.; Ma, C.; Gong, H.X.; Pan, J.L.; Zhang, S.J.; Qian, Y.T.; Bao, K.Y. Synthesis and electrochemical characterization of 2D SnS2/RGO as anode material in sodium-ion batteries. J. Alloys Compd. 2021, 855, 157209. [Google Scholar] [CrossRef]
- Munteanu, R.E.; Moreno, P.S.; Bramini, M.; Gáspár, S. 2D materials in electrochemical sensors for in vitro or in vivo use. Anal. Bioanal. Chem. 2021, 413, 701–725. [Google Scholar] [CrossRef]
- Tapia, M.A.; Gusmão, R.; Serrano, N.; Sofer, Z.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Phosphorene and other layered pnictogens as a new source of 2D materials for electrochemical sensors. TrAC Trends Anal. Chem. 2021, 139, 116249. [Google Scholar] [CrossRef]
- Zhu, D.Z.; Liu, B.; Wei, G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors 2021, 11, 259. [Google Scholar] [CrossRef]
- Zhu, D.Z.; He, P.; Kong, H.; Yang, G.Z.; Luan, X.; Wei, G. Biomimetic graphene-supported ultrafine platinum nanowires for colorimetric and electrochemical detection of hydrogen peroxide. J. Mater. Chem. B 2022, 10, 9216–9225. [Google Scholar] [CrossRef]
- Fu, B.; Sun, J.X.; Wang, C.; Shang, C.; Xu, L.J.; Li, J.B.; Zhang, H. MXenes: MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small 2021, 17, 2170048. [Google Scholar] [CrossRef]
- Huang, H.; Dong, C.H.; Feng, W.; Wang, Y.; Huang, B.C.; Chen, Y. Biomedical engineering of two-dimensional MXenes. Adv. Drug Deliver. Rev. 2022, 184, 114178. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Eom, W.; Lee, K.H.; Jeong, W.; Kang, D.J.; Han, T.H. Highly Electroconductive and Mechanically Strong Ti3C2Tx MXene Fibers Using a Deformable MXene Gel. ACS Nano 2021, 15, 3320–3329. [Google Scholar] [CrossRef] [PubMed]
- Lorencova, L.; Bertok, T.; Filip, J.; Jerigova, M.; Velic, D.; Kasak, P.; Mahmoud, K.A.; Tkac, J. Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sens. Actuators B Chem. 2018, 263, 360–368. [Google Scholar] [CrossRef]
- Zhang, C.F. Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 2021, 60, 417–434. [Google Scholar] [CrossRef]
- Vallee, A.; Humblot, V.; Pradier, C.M. Peptide Interactions with Metal and Oxide Surfaces. Acc. Chem. Res. 2010, 43, 1297–1306. [Google Scholar] [CrossRef]
- Zou, R.F.; Wang, Q.; Wu, J.C.; Wu, J.X.; Schmuck, C.; Tian, H. Peptide self-assembly triggered by metal ions. Chem. Soc. Rev. 2015, 44, 5200–5219. [Google Scholar] [CrossRef]
- Tõugu, V.; Tiiman, A.; Palumaa, P. Interactions of Zn(Ⅱ) and Cu(Ⅱ) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 2011, 3, 250–261. [Google Scholar] [CrossRef]
- Liu, B.; Yao, J.L.; Xing, J.; Yang, M.; Zhu, D.Z.; Ren, W.Z.; Xiang, L.C.; Wang, Y.; Wu, A.G.; Wei, G. Design, biomimetic synthesis, and tumor photothermal therapy of peptide-based two-dimensional photothermal conversion nanomaterials. Mol. Syst. Des. Eng. 2022, 7, 1549–1560. [Google Scholar] [CrossRef]
- Yang, G.Z.; He, P.; Zhu, D.Z.; Wan, K.M.; Kong, H.; Luan, X.; Fang, L.; Wang, Y.; Wei, G. Functional regulation of polymer aerogels by graphene doping and peptide nanofiber-induced biomineralization as sustainable adsorbents of contaminants. Environ. Sci. Nano 2022, 9, 4497–4507. [Google Scholar] [CrossRef]
- Gu, S.T.; Shi, X.M.; Zhang, D.; Fan, G.C.; Luo, X.L. Peptide-Based Photocathodic Biosensors: Integrating a Recognition Peptide with an Antifouling Peptide. Anal. Chem. 2021, 93, 2706–2712. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Liu, B.; Yang, G.Z.; Chen, Y.; Wei, G. Tailoring Peptide Self-Assembly and Formation of 2D Nanoribbons on Mica and HOPG Surface. Materials 2022, 15, 310. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Yang, G.; Zhu, D.; Kong, H.; Corrales-Ureña, Y.R.; Colombi Ciacchi, L.; Wei, G. Biomolecule-mimetic nanomaterials for photothermal and photodynamic therapy of cancers: Bridging nanobiotechnology and biomedicine. J. Nanobiotechnol. 2022, 20, 483. [Google Scholar] [CrossRef]
- Mohammed, S.; Hegab, H.M.; Ou, R.W. Nanofiltration performance of glutaraldehyde crosslinked graphene oxide-cellulose nanofiber membrane. Chem. Eng. Res. Des. 2022, 183, 1–12. [Google Scholar] [CrossRef]
- Zhang, W.H.; Yang, P. 2D bio-nanostructures fabricated by supramolecular self-assembly of protein, peptide, or peptoid. Adv. Compos. Hybrid Mater. 2019, 2, 201–213. [Google Scholar] [CrossRef]
- Magnotti, E.; Conticello, V. Two-Dimensional Peptide and Protein Assemblies. Protein Eng. Nanostruct. 2016, 940, 29–60. [Google Scholar]
- Jia, B.H.; Sun, Y.; Yang, L.J.; Yu, Y.; Fan, H.R.; Ma, G. A structural model of the hierarchical assembly of an amyloid nanosheet by an infrared probe technique. Phys. Chem. Chem. Phys. 2018, 20, 27261–27271. [Google Scholar] [CrossRef]
- Saxena, A.; Liyanage, W.; Masud, J.; Kapila, S.; Nath, M. Selective electroreduction of CO2 to carbon-rich products with a simple binary copper selenide electrocatalyst. J. Mater. Chem. A 2021, 9, 7150–7161. [Google Scholar] [CrossRef]
- Masud, J.; Liyanage, W.P.R.; Cao, X.; Saxena, A.; Nath, M. Copper Selenides as High-Efficiency Electrocatalysts for Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2018, 1, 4075–4083. [Google Scholar] [CrossRef]
- Jin, W.; Fu, Y.Q.; Cai, W.Q. In situ growth of CuS decorated graphene oxide-multiwalled carbon nanotubes for ultrasensitive H2O2 detection in alkaline solution. New J. Chem. 2019, 43, 3309–3316. [Google Scholar] [CrossRef]
- Li, X.Y.; Du, X.Z. Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sens. Actuators B Chem. 2017, 239, 536–543. [Google Scholar] [CrossRef]
- Lipatov, A.; Alhabeb, M.; Lukatskaya, M.R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater. 2016, 2, 1600255. [Google Scholar] [CrossRef] [Green Version]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Klausen, L.H.; Dong, M.D. Two-dimensional peptide based functional nanomaterials. Nano Today 2018, 23, 40–58. [Google Scholar] [CrossRef]
- Xu, L.; Xu, S.; Xiang, T.Y.; Liu, H.; Chen, L.W.; Jiang, B.P.; Yao, J.H.; Zhu, H.L.; Hu, R.F.; Chen, Z.P. Multifunctional building elements for the construction of peptide drug conjugates. Eng. Regen. 2022, 3, 92–109. [Google Scholar] [CrossRef]
- Dai, B.; Li, D.; Xi, W.; Luo, F.; Zhang, X.; Zou, M.; Cao, M.; Hu, J.; Wang, W.Y.; Wei, G.H.; et al. Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proc. Natl. Acad. Sci. USA 2015, 112, 2996–3001. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.J.; Wang, L.W.; Shen, J.W. The self-assembly mechanism of tetra-peptides from the motif of beta-amyloid peptides: A combined coarse-grained and all-atom molecular dynamics simulation. RSC Adv. 2016, 6, 100072–100078. [Google Scholar] [CrossRef]
- Nethravathi, C.; Nath, R.R.; Rajamathi, J.T.; Rajamathi, M. Microwave-Assisted Synthesis of Porous Aggregates of CuS Nanoparticles for Sunlight Photocatalysis. ACS Omega 2019, 4, 4825–4831. [Google Scholar] [CrossRef] [Green Version]
- Pejjai, B.; Reddivari, M.; Kotte, T.R.R. Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: Effect of copper precursors on the properties of CuS. Mater. Chem. Phys. 2020, 239, 122030. [Google Scholar] [CrossRef]
- Riyaz, S.; Parveen, A.; Azam, A. Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route. Perspect. Sci. 2016, 8, 632–635. [Google Scholar] [CrossRef]
- Lu, K.C.; Wang, J.K.; Lin, D.H.; Chen, X.; Yin, S.Y.; Chen, G.S. Construction of a novel electrochemical biosensor based on a mesoporous silica/oriented graphene oxide planar electrode for detecting hydrogen peroxide. Anal. Methods 2020, 12, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
- Salazar, P.; Fernandez, I.; Rodriguez, M.C.; Hernandez-Creus, A.; Gonzalez-Mora, J.L. One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications. J. Electroanal. Chem. 2019, 855, 113638. [Google Scholar] [CrossRef]
- Devaraj, M.; Rajendran, S.; Jebaranjitham, J.N.; Ranjithkumar, D.; Sathiyaraj, M.; Manokaran, J.; Sundaravadivel, E.; Santhanalakshmi, J.; Ponce, L.C. Horseradish Peroxidase-Immobilized Graphene Oxide-Chitosan Gold Nanocomposites as Highly Sensitive Electrochemical Biosensor for Detection of Hydrogen Peroxide. J. Electrochem. Soc. 2020, 167, 147517. [Google Scholar] [CrossRef]
- Cheng, D.; Li, P.P.; Zhu, X.H.; Liu, M.L.; Zhang, Y.Y.; Liu, Y. Enzyme-free Electrochemical Detection of Hydrogen Peroxide Based on the Three-Dimensional Flower-like Cu-based Metal Organic Frameworks and MXene Nanosheets(dagger). Chin. J. Chem. 2021, 39, 2181–2187. [Google Scholar] [CrossRef]
- Zhou, K.W.; Li, Y.; Zhuang, S.J.; Ren, J.; Tang, F.; Mu, J.L.; Wang, P. A novel electrochemical sensor based on CuO-CeO2/MXene nanocomposite for quantitative and continuous detection of H2O2. J. Electroanal. Chem. 2022, 921, 116655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D.; Kong, H.; Yang, G.; He, P.; Luan, X.; Guo, L.; Wei, G. Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide. Biosensors 2023, 13, 14. https://doi.org/10.3390/bios13010014
Zhu D, Kong H, Yang G, He P, Luan X, Guo L, Wei G. Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide. Biosensors. 2023; 13(1):14. https://doi.org/10.3390/bios13010014
Chicago/Turabian StyleZhu, Danzhu, Hao Kong, Guozheng Yang, Peng He, Xin Luan, Lei Guo, and Gang Wei. 2023. "Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide" Biosensors 13, no. 1: 14. https://doi.org/10.3390/bios13010014
APA StyleZhu, D., Kong, H., Yang, G., He, P., Luan, X., Guo, L., & Wei, G. (2023). Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide. Biosensors, 13(1), 14. https://doi.org/10.3390/bios13010014