Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control
Abstract
:1. Introduction
2. Optical Sensors Based on Plasmonic Techniques
3. Recognition Elements and Assay Formats in Plasmonic Sensors
4. Aquaculture Operations and Water Quality Monitoring
4.1. Monitoring of Nitrogenous Compounds
4.2. Monitoring of Biocides and Micropollutants
4.3. Monitoring of Fish Health by Stress Indicators
5. Monitoring of Pathogens and Disease Management
5.1. Pathogen Detection
5.2. Monitoring of Antibiotic Residues Due to Disease Control in Aquaculture
6. Harmful Algal Bloom and Its Toxins Monitoring
7. Fish and Shellfish Freshness: Safety Evaluation
8. Final Remarks and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2022. Towards Blue The State of World. 2022. Available online: https://www.fao.org/3/cc0461en/online/cc0461en.html (accessed on 12 November 2022).
- Boyd, C.; McNevin, A. Aquaculture, Resource Use, and the Environment; John Wiley & Sons.: New York, NY, USA, 2015. [Google Scholar]
- Bentzon-tilia, M.; Sonnenschein, E.C. Monitoring and managing microbes in aquaculture—Towards a sustainable industry. Microb. Biotechnol. 2016, 9, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Cabello, F.C.; Godfrey, H.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Leitão, C.; Leal-Junior, A.; Almeida, A.R.; Pereira, S.O.; Costa, F.M.; Pinto, J.L.; Marques, C. Cortisol AuPd plasmonic unclad POF biosensor. Biotechnol. Rep. 2021, 29, e00587. [Google Scholar] [CrossRef] [PubMed]
- Vidic, J.; Vizzini, P.; Manzano, M.; Kavanaugh, D.; Ramarao, N.; Zivkovic, M.; Radonic, V.; Knezevic, N.; Giouroudi, I.; Gadjanski, I. Point-of-need DNA testing for detection of foodborne pathogenic bacteria. Sensors 2019, 19, 1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, M.; Zaczek-Moczydlowska, M.; Edwards, C.; Turner, A.; Miller, P.; Moore, H.; McKinney, A.; Lawton, L.; Campbell, K. Current trends and challenges for rapid smart diagnostics at point-of-site testing for marine toxins. Sensors 2021, 21, 2499. [Google Scholar] [CrossRef] [PubMed]
- Balbinot, S.; Srivastav, A.M.; Vidic, J.; Abdulhalim, I.; Manzano, M. Plasmonic biosensors for food control. Trends Food Sci. Technol. 2021, 111, 128–140. [Google Scholar] [CrossRef]
- Kim, E.; Baaske, M.D.; Vollmer, F. Towards next-generation label-free biosensors: Recent advances in whispering gallery mode sensors. Lab Chip 2017, 17, 1190–1205. [Google Scholar] [CrossRef]
- Hill, R.T. Plasmonic biosensors. Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 152–168. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.D.; Verma, R.K. Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications. J. Sens. 2009, 2009, 979761. [Google Scholar] [CrossRef] [Green Version]
- Koyun, A.; Ahlatcolu, E.; Koca, Y.; Kara, S. Biosensors and Their Principles. A Roadmap Biomed. Eng. Milestones; InTech: Vienna, Austria, 2012; pp. 117–142. [Google Scholar]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Takemura, K.; Satoh, J.; Boonyakida, J.; Park, S.; Chowdhury, A.D.; Park, E.Y. Electrochemical detection of white spot syndrome virus with a silicone rubber disposable electrode composed of graphene quantum dots and gold nanoparticle embedded polyaniline nanowires. J. Nanobiotechnol. 2020, 18, 152. [Google Scholar] [CrossRef] [PubMed]
- Chern, M.; Kays, J.C.; Bhuckory, S.; Dennis, A.M. Sensing with photoluminescent semiconductor quantum dots. Methods Appl. Fluoresc. 2019, 7, 012005. [Google Scholar] [CrossRef] [PubMed]
- Arseneau, J.R.; Laflamme, M.; Moncton, N.B. Development of RT-qPCR Methodologies for the Detection of Viral Pathogens in Various Shrimp Species; Fisheries and Oceans Canada, Gulf Fisheries Centre: Vancouver, BC, Canada, 2016. [Google Scholar]
- Cowley, J.A.; Rao, M.; Mohr, P.; Moody, N.J.; Sellars, M.J.; Crane, M.S. TaqMan real-time and conventional nested PCR tests specific to yellow head virus genotype 7 (YHV7) identified in giant tiger shrimp in Australia. J. Virol. Methods 2019, 273, 113689. [Google Scholar] [CrossRef]
- Wong, C.L.; Olivo, M. Surface plasmon resonance imaging sensors: A review. Plasmonics 2014, 9, 809–824. [Google Scholar] [CrossRef]
- Gupta, B.D.; Shrivastav, A.M.; Usha, S.P. Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting. Sensors 2016, 16, 1381. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sens. J. 2007, 7, 1118–1128. [Google Scholar] [CrossRef]
- Markatos, S.; Zervas, M.N.; Giles, I.P. Optical fiber surface plasmon wave devices. Electron. Lett. 1988, 24, 287–288. [Google Scholar] [CrossRef]
- Jorgenson, R.C.; Yee, S.S. A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 1993, 12, 213–220. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Verma, R.K.; Gupta, B.D. Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor. Appl. Opt. 2009, 48, 3796–3802. [Google Scholar] [CrossRef]
- Guo, L.; Jackman, J.A.; Yang, H.H.; Chen, P.; Cho, N.J.; Kim, D.H. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 2015, 10, 213–239. [Google Scholar] [CrossRef]
- Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem. Res. 2008, 41, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Sayed, I.H.; El-Sayed, M.A.; Jain, P.K.; Lee, K.S. El-Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar]
- Guo, L.; Wang, D.; Xu, Y.; Qiu, B.; Lin, Z.; Dai, H.; Yang, H.-H.; Chen, G. Discrimination of enantiomers based on LSPR biosensors fabricated with weak enantioselective and nonselective receptors. Biosens. Bioelectron. 2013, 47, 199–205. [Google Scholar] [CrossRef]
- SS dos Santos, P.; MMM de Almeida, J.; Pastoriza-Santos, I.; Coelho, L.C.C. Advances in plasmonic sensing at the NIR—A review. Sensors 2021, 21, 2111. [Google Scholar] [CrossRef]
- Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J.H. Surface plasmonic sensors: Sensing mechanism and recent applications. Sensors 2021, 21, 5262. [Google Scholar] [CrossRef] [PubMed]
- Lesiak, A.; Drzozga, K.; Cabaj, J.; Bański, M.; Malecha, K.; Podhorodecki, A. Optical Sensors Based on II-VI Quantum Dots. Nanomaterials 2019, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Stanisavljevic, M.; Krizkova, S.; Vaculovicova, M.; Kizek, R.; Adam, V. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 2015, 74, 562–574. [Google Scholar] [CrossRef]
- Takemura, K.; Adegoke, O.; Takahashi, N.; Kato, T.; Li, T.-C.; Kitamoto, N.; Tanaka, T.; Suzuki, T.; Park, E.Y. Versatility of a localized surface plasmonnresonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens. Bioelectron. 2017, 89, 998–1005. [Google Scholar] [CrossRef]
- Nasrin, F.; Chowdhury, A.D.; Takemura, K.; Lee, J.; Adegoke, O.; Deo, V.K.; Abe, F.; Suzuki, T.; Park, E.Y. Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Biosens. Bioelectron. 2018, 122, 16–24. [Google Scholar] [CrossRef]
- Citroni, R.; Di Paolo, F.; Livreri, P. Progress in THz Rectifier Technology: Research and Perspectives. Nanomaterials 2022, 12, 2479. [Google Scholar] [CrossRef]
- Campbell, K.; Rawn, D.F.; Niedzwiadek, B.; Elliott, C.T. Paralytic shellfish poisoning (PSP) toxin binders for optical biosensor technology: Problems and possibilities for the future: A review. Food Addit. Contam. Part A 2011, 28, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Gestwicki, J.E.; Hsieh, H.V.; Pitner, J.B. Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance. Anal. Chem. 2001, 73, 5732–5737. [Google Scholar] [CrossRef]
- De Jong, L.A.; Uges, D.R.; Franke, J.P.; Bischoff, R. Receptor ligand binding assays: Technologies and applications. J. Chrom. B 2005, 829, 1–25. [Google Scholar] [CrossRef]
- Chambers, J.P.; Arulanandam, B.P.; Matta, L.L.; Weis, A.; Valdes, J.J. Biosensor recognition elements. Curr. Issues Mol. Biol. 2008, 10, 1–12. [Google Scholar] [PubMed]
- Taylor, A.D.; Yu, Q.; Chen, S.; Homola, J.; Jiang, S. Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor. Sens. Actuators B Chem. 2005, 107, 202–208. [Google Scholar] [CrossRef]
- Chocarro-Ruiz, B.; Herranz, S.; Fernandez-Gavela, A.; Sanchís, J.; Farre, M.; Marco, M.P.; Lechuga, L.M. Interferometric nanoimmunosensor for label-free and real-time monitoring of Irgarol 1051 in seawater. Biosens. Bioelectron. 2018, 117, 47–52. [Google Scholar] [CrossRef]
- Harris, R.; Luff, B.; Wilkinson, J.; Piehler, J.; Brecht, A.; Gauglitz, G.; Abuknesha, R. Integrated optical surface plasmon resonance immunoprobe for simazine detection. Biosens. Bioelectron. 1999, 14, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Fonfría, E.S.; Vilariño, N.; Vieytes, M.R.; Yasumoto, T.; Botana, L.M. Feasibility of using a surface plasmon resonance-based biosensor to detect and quantify yessotoxin. Anal. Chim. Acta 2008, 617, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kim, Y.S.; Keum, S.R.; Kim, S.H.; Choi, H.J.; Lee, J.; An, W.G.; Koh, K. Surface plasmon spectroscopic detection of saxitoxin. Sensors 2007, 7, 1216–1223. [Google Scholar] [CrossRef] [Green Version]
- Lotierzo, M.; Henry, O.; Piletsky, S.; Tothill, I.; Cullen, D.; Kania, M.; Hock, B.; Turner, A. Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer. Biosens. Bioelectron. 2004, 20, 45–152. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Ling-Yun, J. Progress in aptamer screening methods. Chinese J. Anal. Chem. 2009, 37, 454–460. [Google Scholar]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.L.; Devanarayan, V.; Kriauciunas, A.; Manetta, J.; Montrose, C.; Sittampalam, S. Immunoassay Methods. 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK92434/ (accessed on 15 November 2022).
- Mauriz, E.; Calle, A.; Abad, A.; Montoya, A.; Hildebrandt, A.; Barceló, D.; Lechuga, L. Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor. Biosens. Bioelectron. 2006, 21, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Singh, R.; Soares, M.S.; Marques, C.; Bingyuan, Z.; Kumar, S. Convex fiber-tapered seven core fiber-convex fiber (CTC) structure-based biosensor for creatinine detection in aquaculture. Opt. Express 2022, 30, 13898–13914. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Li, D.; Liu, R.; Cui, C.; Guo, Z. Label-free aptasensor for ochratoxin A detection using SYBR Gold as a probe. Sens. Actuators B Chem. 2017, 246, 647–652. [Google Scholar] [CrossRef]
- Garibo, D.; Campbell, K.; Casanova, A.; de la Iglesia, P.; Fernández-Tejedor, M.; Diogène, J.; Elliott, C.; Campàs, M. SPR immunosensor for the detection of okadaic acid in mussels using magnetic particles as antibody carriers. Sens. Actuators B Chem. 2014, 190, 822–828. [Google Scholar] [CrossRef]
- Díaz, V.; Ibáñez, R.; Gómez, P.; Urtiaga, A.M.; Ortiz, I. Kinetics of nitrogen compounds in a commercial marine Recirculating Aquaculture System. Aquac. Eng. 2012, 50, 20–27. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; Mccarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner ’ s Guide to Cyclic Voltammetry. J. Chem. Educ. 2017, 95, 197–206. [Google Scholar] [CrossRef]
- Vr, M.; Koutn, I.; Markov, D. Combined SPRi Sensor for Simultaneous Detection of Nitrate and Ammonium in Wastewater. Sensors 2021, 21, 725. [Google Scholar]
- Miao, P.; Liu, Z.; Guo, J.; Yuan, M.; Zhong, R.; Wang, L.; Zhang, F. A novel ultrasensitive surface plasmon resonance-based nanosensor for nitrite detection. RSC Adv. 2019, 9, 17698–17705. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.V.; Schwarz, M.H.; Delbos, B.C.; Sampaio, L.A. Acute toxicity and sublethal effects of ammonia and nitrite for juvenile cobia Rachycentron canadum. Aquaculture 2007, 271, 553–557. [Google Scholar] [CrossRef]
- Jalal, A.H.; Yu, J.; Nnanna, A. Fabrication and calibration of Oxazine-based optic fiber sensor for detection of ammonia in water. Appl. Opt. 2012, 51, 3768–3775. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Rashid, S.A.; Bakar, M.H.A.; Anas, S.B.A.; Mahdi, M.A.; Yaacob, M.H. Fabrication and characterizations of a novel etched-tapered single mode optical fiber ammonia sensors integrating PANI/GNF nanocomposite. Sens. Actuators B Chem. 2019, 287, 71–77. [Google Scholar] [CrossRef]
- Chu, C.S.; Chen, Y.F. Development of ratiometric optical fiber sensor for ammonia gas detection. In 2017 25th Optical Fiber Sensors Conference; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Leal-junior, A.G.; Frizera, A. Low-cost Fiberoptic Probe for Ammonia Early Detection in Fish Farms. Remote Sens. 2020, 12, 1439. [Google Scholar] [CrossRef]
- Naessens, M.; Leclerc, J.C.; Tran-Minh, C. Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol. Environ. Saf. 2000, 46, 181–185. [Google Scholar] [CrossRef]
- Muñoz, I.; Martínez Bueno, M.J.; Agüera, A.; Fernández-Alba, A.R. Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm. Environ. Pollut. 2010, 158, 1809–1816. [Google Scholar] [CrossRef]
- Hites, R.A.; Foran, J.A.; Carpenter, D.O.; Hamilton, M.C.; Knuth, B.A.; Schwager, S.J. Global assessment of organic contaminants in farmed salmon. Science 2004, 303, 226–229. [Google Scholar] [CrossRef]
- Perschbacher, P.W.; Edziyie, R.; Ludwig, G. Chapter 11 Row Crop Herbicide Drift Effects on Water Bodies and Aquaculture. Herbic. Synth. Control. Weeds. IntechOpen. 2012, 191–204. [Google Scholar]
- Perschbacher, P.W.; Ludwig, G.M.; Slaton, N. Effects of common aerially applied rice herbicides on the plankton communities of aquaculture ponds. Aquaculture 2002, 214, 241–246. [Google Scholar] [CrossRef]
- Olatoye, I.O.; Okocha, R.C.; Oridupa, O.A.; Nwishienyi, C.N.; Tiamiyu, A.M.; Adedeji, O.B. Atrazine in fish feed and african catfish (Clarias gariepinus) from aquaculture farms in Southwestern Nigeria. Heliyon 2021, 7, 06076. [Google Scholar] [CrossRef]
- Agrawal, H.; Shrivastav, A.M.; Gupta, B.D. Surface plasmon resonance based optical fiber sensor for atrazine detection using molecular imprinting technique. Sens. Actuators B Chem. 2016, 227, 204–211. [Google Scholar] [CrossRef]
- Fernández-gavela, A.; Herranz, S.; Chocarro, B.; Falke, F.; Schreuder, E. Full integration of photonic nanoimmunosensors in portable platforms for on-line monitoring of ocean pollutants. Sens. Actuators B Chem. 2019, 297, 126758. [Google Scholar] [CrossRef]
- Yazdi, S.H.; White, I.M. Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem. Analyst 2013, 138, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Endo, H.; Wu, H. Biosensors for the assessment of fish health: A review. Fish. Sci. 2019, 85, 641–654. [Google Scholar] [CrossRef]
- Mota, V.C.; Martins, C.I.; Eding, E.H.; Canário, A.V.; Verreth, J.A. Steroids accumulate in the rearing water of commercial recirculating aquaculture systems. Aquac. Eng. 2014, 62, 9–16. [Google Scholar] [CrossRef]
- Ruane, N.M.; Komen, H. Measuring cortisol in the water as an indicator of stress caused by increased loading density in common carp (Cyprinus carpio). Aquaculture 2003, 218, 685–693. [Google Scholar] [CrossRef]
- Soares, M.S.; Silva, L.C.B.; Vidal, M.; Loyez, M.; Facão, M.; Caucheteur, C.; Segatto, M.E.V.; Costa, F.M.; Leitão, C.; Pereira, S.O.; et al. Label-free plasmonic immunosensor for cortisol detection in a D-shaped optical fiber. Biomed. Opt. Express 2022, 13, 3259–3274. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.C.; Soelberg, S.D.; Near, S.; Furlong, C.E. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system. Anal. Chem. 2008, 80, 6747–6751. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, S.H.; Graziela, C.R.; Moura, A.; Garcia, F.; Pilarski, F. Antibiotic residues and resistant bacteria in aquaculture. Pharm. Chem. J. 2018, 5, 127–147. [Google Scholar]
- Su, X.; Sutarlie, L.; Loh, X.J. Sensors, biosensors, and analytical technologies for aquaculture water quality. Res. A Sci. Partn. J. 2020, 2020, 8272705. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.H. Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J. Mar. Sci. Res. Dev. 2012, 1, 1–7. [Google Scholar]
- Ina-Salwany, M.Y.; Al-saari, N.A.M. Vibriosis in fish: A review on disease development and prevention. J. Aquat. Anim. Health 2019, 31, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-Y.; Lee, K.-A.; Lee, M.-J.; Sekhon, S.S.; Rhee, S.-K.; Cho, S.-J.; Ko, J.H.; Lee, L.; Han, J.; Kim, S.Y.; et al. Surface plasmon resonance aptamer biosensor for discriminating pathogenic Bacteria Vibrio parahaemolyticus. J. Nanosci. Nanotechnol. 2018, 18, 1599–1605. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C. The applications of plasmonics biosensor and bamboo char filtration to the prevention of nervous necrosis virus infection in grouper farming ponds. IOP Conf. Ser. Earth Environ. Sci. 2021, 686, 012003. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, H.; Dai, H.; Zeng, Z.; Lin, Y.; Zhou, F.; Pang, D. Electroless-plated gold films for sensitive surface plasmon resonance detection of white spot syndrome virus. Biosens. Bioelectron. 2008, 23, 1200–1207. [Google Scholar] [CrossRef]
- Lightner, D.; Redman, R.; Pantoja, C.; Tang, K.; Noble, B.; Schofield, P.; Mohney, L.; Nunan, L.; Navarro, S. Historic emergence, impact and current status of shrimp pathogens in the Americas. J. Invertebr. Pathol. 2012, 110, 174–183. [Google Scholar] [CrossRef]
- Mai-Ngam, K.; Kiatpathomchai, W.; Arunrut, N.; Sansatsadeekul, J. Molecular self assembly of mixed comb-like dextran surfactant polymers for SPR virus detection. Carbohydr. Polym. 2014, 112, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Sari, E.; Üzek, R.; Duman, M.; Denizli, A. Detection of ciprofloxacin through surface plasmon resonance nanosensor with specific recognition sites. J. Biomater. Sci. Polym. Ed. 2018, 29, 1302–1318. [Google Scholar] [CrossRef]
- Sari, E.; Üzek, R.; Duman, M.; Denizli, A. Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles. Talanta 2016, 150, 607–614. [Google Scholar] [CrossRef]
- Gupta, B.D.; Shrivastav, A.M.; Usha, S.P. Fiber optic SPR nanosensor for erythromycin detection using molecularly imprinted nanoparticles. In CLEO: Science and Innovations; Optica Publishing Group: Washington, DC, USA, 2016; p. SM4P-7. [Google Scholar]
- Yuan, X.L.; Wu, X.Y.; He, M.; Lai, J.P.; Sun, H. A Ratiometric Fiber Optic Sensor Based on CdTe QDs Functionalized with Glutathione and Mercaptopropionic Acid for On-Site Monitoring of Antibiotic Ciprofloxacin in Aquaculture Water. Nanomaterials 2022, 12, 829. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Díaz, R.J.; Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 2009, 66, 1528–1537. [Google Scholar] [CrossRef]
- CDC. Harmful Algal Bloom (HAB)-Associated Illness. Centers Dis Control Prev. 2022. Available online: https://www.cdc.gov/habs/general.html (accessed on 13 October 2022).
- Food and Agriculture Organization of the United Nations (FAO) Codex Standard 292-2008 Standard for Live and Raw Bivalve Molluscs. Codex. Aliment. Int. Food Stand. 2008. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B292-2008%252FCXS_292e_2015.pdf (accessed on 10 November 2022).
- European Commission. Regulation (EC) No 2074/2005: Laying down Implementing Measures for Certain Products under Regulation (EC) No 853/2004 of the European Parliament and of the Council and for the Organisation of Official Controls under Regulation (EC) No 854/2004 of the Eur. Off J. Eur. Union. L Luxemb 2005. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:338:0027:0059:EN:PDF#:~:text=requirements%20concerning%20hygiene%20rules%20for,snails%2C%20and%20processed%20products%20thereof (accessed on 24 November 2022).
- European Commission. Regulation (EC) No 1664/2006: Amending Regulation 2074/2005 with Regards to Measures for Certain Products, in Particular the Testing Method for Paralytic Shellfish Poison (PSP). Off J. Eur. Union. L Luxemb. 2006. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1664 (accessed on 25 November 2022).
- European Commission. Commission Regulation (EU) No 15/2011 of 10 January 2011 amending Regulation (EC) No 2074/2005 as Regards Recognised Testing Methods for Detecting Marine Biotoxins in Live Bivalve Molluscs. Off J. Eur. Union. L Luxemb. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32011R0015 (accessed on 25 November 2022).
- WHO. Chapter 12. Chemical Fact Sheets. Guidel. Drink. Qual, 4th ed.; first Second addenda; Gutembreg Press Ltd.: Tarxien, Malta, 2022; pp. 329–489. [Google Scholar]
- European Union Reference Laboratory for Marine Biotoxins. EU-Harmonised Standard Operating Procedure for Determination of Domoic Acid in Shellfish and Finfish by RP-HPLC Using UV Detection. Agencia. Española. Consum. Segur. Aliment. Y Nutr. 2008. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/laboratorios/LNRBM/archivo4_EU-Harmonised-SOP-ASP-HPLC-UV_Version1.pdf (accessed on 23 November 2022).
- European Union Reference Laboratory for Marine Biotoxins. EU-Harmonised Standard Operating Procedure for Determination of Lipophilic Marine Biotoxins in Molluscs by LC-MS/MS. 2015. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/laboratorios/LNRBM/ARCHIVO2EU-Harmonised-SOP-LIPO-LCMSMS_Version5.pdf (accessed on 15 November 2022).
- Campbell, K.; Haughey, S.A.; Top, H.V.D.; van Egmond, H.; Vilariño, N.; Botana, L.M.; Elliott, C.T. Single laboratory validation of a surface plasmon resonance biosensor screening method for paralytic shellfish poisoning toxins. Anal. Chem. 2010, 82, 2977–2988. [Google Scholar] [CrossRef]
- Campbell, K.; Barnes, P.; Haughey, S.A.; Higgins, C.; Kawatsu, K.; Vasconcelos, V.; Elliott, C.T. Development and single laboratory validation of an optical biosensor assay for tetrodotoxin detection as a tool to combat emerging risks in European seafood. Anal. Bioanal. Chem. 2013, 405, 7753–7763. [Google Scholar] [CrossRef]
- Reverté, L.; Campàs, M.; Yakes, B.J.; Deeds, J.R.; Katikou, P.; Kawatsu, K.; Lochhead, M.; Elliott, C.T.; Campbell, K. Tetrodotoxin detection in puffer fish by a sensitive planar waveguide immunosensor. Sens. Actuators B Chem. 2017, 253, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Mouri, R.; Oishi, T.; Torikai, K.; Ujihara, S.; Matsumori, N.; Murata, M.; Oshima, Y. Surface plasmon resonance-based detection of ladder-shaped polyethers by inhibition detection method. Bioorg. Med. Chem. Lett. 2009, 19, 2824–2828. [Google Scholar] [CrossRef]
- Fonfría, E.S.; Vilariño, N.; Campbell, K.; Elliott, C.; Haughey, S.A.; Ben-Gigirey, B.; Vieites, J.M.; Kawatsu, K.; Botana, L.M. Paralytic shellfish poisoning detection by surface plasmon resonance-based biosensors in shellfish matrixes. Anal. Chem. 2007, 79, 6303–6311. [Google Scholar] [CrossRef] [PubMed]
- Yakes, B.J.; Prezioso, S.; Haughey, S.A.; Campbell, K.; Elliott, C.T.; DeGrasse, S.L. An improved immunoassay for detection of saxitoxin by surface plasmon resonance biosensors. Sens. Actuators B Chem. 2011, 156, 805–811. [Google Scholar] [CrossRef]
- Haughey, S.A.; Campbell, K.; Yakes, B.J.; Prezioso, S.M.; DeGrasse, S.L.; Kawatsu, K.; Elliott, C.T. Comparison of biosensor platforms for surface plasmon resonance based detection of paralytic shellfish toxins. Talanta 2011, 85, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Rawn, D.F.K.; Niedzwiadek, B.; Campbell, K.; Higgins, H.C.; Elliott, C.T. Evaluation of surface plasmon resonance relative to high pressure liquid chromatography for the determination of paralytic shellfish toxins. J. Agric. Food Chem. 2009, 57, 10022–10031. [Google Scholar] [CrossRef]
- Campbell, K.; Stewart, L.D.; Doucette, G.J.; Fodey, T.L.; Haughey, S.A.; Vilariño, N.; Kawatsu, K.; Elliott, C.T. Assessment of specific binding proteins suitable for the detection of paralytic shellfish poisons using optical biosensor technology. Anal. Chem. 2007, 79, 5906–5914. [Google Scholar] [CrossRef]
- Ha, S.J.; Park, J.H.; Lee, B.; Kim, M.G. Label-Free Direct Detection of Saxitoxin Based on a Localized Surface Plasmon Resonance Aptasensor. Toxins 2019, 11, 274. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zou, L.; Wu, Z.; Sun, M. The application of quantum dots in aquaculture pollution detection. Toxicol. Env. Chem. 2016, 98, 385–394. [Google Scholar] [CrossRef]
- Ciesielski, G.L.; Hytönen, V.P.; Kaguni, L.S.B. Biolayer Interferometry: A Novel Method to Elucidate Protein–Protein and Protein–DNA Interactions in the Mitochondrial DNA Replisome. Mitochondrial DNA, New York, NY, USA; Springer: Berlin/Heidelberg, Germany, 2016; pp. 223–231. [Google Scholar]
- Kumaraswamy, S.; Tobias, R. Label-Free Kinetic Analysis of an Antibody–Antigen Interaction Using Biolayer Interferometry. Protein-Protein Interact: New York, NY, USA; Springer: Berlin/Heidelberg, Germany, 2015; pp. 165–182. [Google Scholar]
- Gao, S.; Hu, B.; Zheng, X.; Cao, Y.; Liu, D.; Sun, M.; Jiao, B.; Wang, L. Gonyautoxin 1/4 aptamers with high-affinity and high-specificity: From efficient selection to aptasensor application. Biosens. Bioelectron. 2016, 79, 938–944. [Google Scholar] [CrossRef]
- Gao, S.; Zheng, X.; Wu, J. A biolayer interferometry-based competitive biosensor for rapid and sensitive detection of saxitoxin. Sens. Actuators B Chem. 2017, 246, 169–174. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, S.; Taylor, A.D.; Homola, J.; Hock, B.; Jiang, S. Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sens. Actuators B Chem. 2005, 107, 193–201. [Google Scholar] [CrossRef]
- Traynor, I.M.; Plumpton, L.; Fodey, T.L.; Higgins, C.; Elliott, C.T. Immunobiosensor detection of domoic acid as a screening test in bivalve molluscs: Comparison with liquid chromatography-based analysis. J. AOAC Int. 2006, 89, 868–872. [Google Scholar] [CrossRef] [PubMed]
- Llamas, N.M.; Stewart, L.; Fodey, T.; Higgins, H.C.; Velasco, M.L.R.; Botana, L.M.; Elliott, C.T. Development of a novel immunobiosensor method for the rapid detection of okadaic acid contamination in shellfish extracts. Anal. Bioanal. Chem. 2007, 389, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Marquette, C.A.; Coulet, P.R.; Blum, L.J. Semi-automated membrane based chemiluminescent immunosensor for flow injection analysis of okadaic acid in mussels. Anal. Chim. Acta 1999, 398, 173–182. [Google Scholar] [CrossRef]
- Yakes, B.J.; Degrasse, S.L.; Poli, M.; Deeds, J.R. Antibody characterization and immunoassays for palytoxin using an SPR biosensor. Anal. Bioanal. Chem. 2011, 400, 2865–2869. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.; McNamee, S.E.; Huet, A.-C.; Delahaut, P.; Vilariño, N.; Botana, L.M.; Poli, M.; Elliott, C.T. Evolving to the optoelectronic mouse for phycotoxin analysis in shellfish. Anal. Bioanal. Chem. 2014, 406, 6867–6881. [Google Scholar] [CrossRef]
- Gao, S.; Zheng, X.; Hu, B.; Sun, M.; Wu, J.; Jiao, B.; Wang, L. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin. Biosens. Bioelectron. 2017, 89, 952–958. [Google Scholar] [CrossRef]
- Van Apeldoorn, M.E.; Van Egmond, H.P.; Speijers, G.J.; Bakker, G.J. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007, 51, 7–60. [Google Scholar] [CrossRef]
- Long, F.; He, M.; Zhu, A.N.; Shi, H.C. Portable optical immunosensor for highly sensitive detection of microcystin-LR in water samples. Biosens. Bioelectron. 2009, 24, 2346–2351. [Google Scholar] [CrossRef]
- Herranz, S.; Bocková, M.; Marazuela, M.D.; Homola, J.; Moreno-Bondi, M.C. An SPR biosensor for the detection of microcystins in drinking water. Anal. Bioanal. Chem. 2010, 398, 2625–2634. [Google Scholar] [CrossRef]
- Devlin, S.; Meneely, J.P.; Greer, B.; Campbell, K.; Vasconcelos, V.; Elliott, C. Production of a broad specificity antibody for the development and validation of an optical SPR screening method for free and intracellular microcystins and nodularin in cyanobacteria cultures. Talanta 2014, 122, 8–15. [Google Scholar] [CrossRef]
- Shi, H.C.; Song, B.D.; Long, F.; Zhou, X.H.; He, M.; Lv, Q.; Yang, H.Y. Automated online optical biosensing system for continuous real-time determination of microcystin-lr with high sensitivity and specificity: Early warning for cyanotoxin risk in drinking water sources. Environ. Sci. Technol. 2013, 47, 4434–4441. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, C.; Kobayashi, T.; Miyake, M.; Shirai, M.; Miyakea, J. Usage of a DNA aptamer as a ligand targeting microcystin. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 2001, 371, 369–374. [Google Scholar] [CrossRef]
- Elliott, C.T.; Redshaw, C.H.; George, S.E.; Campbell, K. First development and characterisation of polyclonal and monoclonal antibodies to the emerging fresh water toxin cylindrospermopsin. Harmful Algae 2013, 24, 10–19. [Google Scholar] [CrossRef]
- McNamee, S.E.; Elliott, C.T.; Greer, B.; Lochhead, M.; Campbell, K. Development of a planar waveguide microarray for the monitoring and early detection of five harmful algal toxins in water and cultures. Environ. Sci. Technol. 2014, 48, 13340–13349. [Google Scholar] [CrossRef] [PubMed]
- Mcnamee, S.E.; Elliott, C.T.; Delahaut, P.; Campbell, K. Multiplex biotoxin surface plasmon resonance method for marine biotoxins in algal and seawater samples. Environ. Sci. Pollut. Res. 2013, 20, 6794–6807. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.; McGrath, T.; Sjölander, S.; Hanson, T.; Tidare, M.; Jansson, O.; Moberg, A.; Mooney, M.; Elliott, C.; Buijs, J. Use of a novel micro-fluidic device to create arrays for multiplex analysis of large and small molecular weight compounds by surface plasmon resonance. Biosens. Bioelectron. 2011, 26, 3029–3036. [Google Scholar] [CrossRef] [PubMed]
- McCoy, G.R.; McNamee, S.; Campbell, K.; Elliott, C.T.; Fleming, G.T.; Raine, R. Monitoring a toxic bloom of Alexandrium minutum using novel microarray and multiplex surface plasmon resonance biosensor technology. Harmful Algae 2014, 32, 40–48. [Google Scholar] [CrossRef]
- Meneely, J.P.; Campbell, K.; Greef, C.; Lochhead, M.J.; Elliott, C.T. Development and validation of an ultrasensitive fluorescence planar waveguide biosensor for the detection of paralytic shellfish toxins in marine algae. Biosens. Bioelectron. 2013, 41, 691–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, C.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J.; Papageorgiou, M.; Lambropoulou, D. Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends Anal. Chem. 2018, 98, 128–142. [Google Scholar]
- Danchuk, A.; Komova, N.S.; Mobarez, S.N.; Doronin, S.Y.; Burmistrova, N.A.; Markin, A.V.; Duerkop, A. Optical sensors for determination of biogenic amines in food. Anal. Bioanal. Chem. 2020, 412, 4023–4036. [Google Scholar] [CrossRef]
- Tseng, S.Y.; Li, S.Y.; Yi, S.Y.; Sun, A.Y.; Gao, D.Y.; Wan, D. Food quality monitor: Paper-based plasmonic sensors prepared through reversal nanoimprinting for rapid detection of biogenic amine odorants. ACS Appl. Mater. Interfaces 2017, 9, 17306–17316. [Google Scholar] [CrossRef] [PubMed]
- Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: Visual detection of volatile compounds in a piece of plasmonic nanopaper. Nanoscale 2016, 8, 7984–7991. [Google Scholar] [CrossRef] [PubMed]
- Gholampour, S.; Jalali, H.; Zhiani, R.; Rashidi, H. Motavalizadehkakhky, A. Biogenic amines to tune the LSPR adsorption peak of gold NPs for intelligent packaging application. Inorg. Chem. Commun. 2021, 123, 108334. [Google Scholar] [CrossRef]
- Chow, C.F. Biogenic amines-and sulfides-responsive gold nanoparticles for real-time visual detection of raw meat, fish, crustaceans, and preserved meat. Food Chem. 2020, 311, 125908. [Google Scholar] [CrossRef]
- Kaewwonglom, N.; Oliver, M.; Cocovi-Solberg, D.J.; Zirngibl, K.; Knopp, D.; Jakmunee, J.; Miró, M. Reliable Sensing Platform for Plasmonic Enzyme-Linked Immunosorbent Assays Based on Automatic Flow-Based Methodology. Anal. Chem. 2019, 91, 13260–13267. [Google Scholar] [CrossRef]
- Ding, R.; Chen, Y.; Wang, Q.; Wu, Z.; Zhang, X.; Li, B.; Lin, L. Recent advances in quantum dots-based biosensors for antibiotic detection. J. Pharm. Anal. 2021, 12, 355–364. [Google Scholar] [CrossRef]
Sensing Technology | Advantages | Disadvantages | References |
---|---|---|---|
Prism-based SPR | Allows the study of binding interactions in a label-free format (i.e., no addition of fluorescent tags is necessary). Highly sensitive to the refractive index (RI) of the medium in contact with the metal film (usually aqueous solution for aquaculture applications). Widely established and commercially available. SPR studies can exist in a multiplexed employing multichannel device. | The prism can be bulky and difficult to incorporate into miniaturised platforms. Only detects RI changes close to the metal film surface (extends ~200 nm). Temperature control is needed to produce stable SPR signals. The sensing device cannot be used for remote sensing applications. | [10] |
LSPR | More amenable to multiplexing and miniaturisation than prism-based SPR. Detection systems can be tuned by varying the nanoparticles’ size, shape, and composition. Allows the use of wavelengths that do not overlap with the spectral features of strongly absorbing samples (natural chromophores). The plasmon resonant nanostructures can be used as fluorophore tags LSPR sensors are susceptible to the RI of the surrounding medium. | Detects RI changes that happen only tens of nanometers into the surrounding medium. LSPR sensors have dramatically reduced sensing volumes, extending the detection limit to the single-molecule level. Sensing experiments need to ensure that the binding of the target molecule happens within the sensing volume as opposed to outside of it, especially when it involves bulky molecules. | [11] |
FO-SPR | SPR probe can be miniaturised. Flexible, can be easily moved, and allow remote sensing application. Temperature control is not needed to produce stable signals. Multiplex analysis can be allowed by the guiding light in different wavelengths simultaneously | Complex fabrication and surface functionalisation. Damage of sensing elements due to prolonged exposure to incident light. Slow response time due to the diffusion effect of analytes. | [12] |
Electrochemical sensors | Low-cost production of electrodes and microelectronic circuits. The straightforward interface of electronic read-out and processing. Multiple enzymatic labels increase the signal per event. | There are electrical safety hazards and electrical interference. Factors such as pH and ionic strength in fluids can r significantly affect the sensor’s response. The miniaturisation of electrochemical sensors tends to increase the signal-to-noise. These devices use redox molecules that mediate the electrochemical reaction at the working electrode. The lifetime of electrodes diminishes due to fouling effects. | [13] |
Quantum dots sensing | Excellent fluorophores, resistant to thermal and photochemical reactions. Simple manufacturing process | Low fluorescence quantum yield Requires surface passivation process (coating). Sensitivity relies on the recognition element. | [14,15] |
Polymerase chain reaction (PCR) | Highly sensitive, accurate, and good repeatability. Real-time analysis. | Require PCR instrument. Costly reagents. Time-consuming. Requires technical expertise. | [16,17] |
Chromatography–mass spectrometry | Highly sensitive, accurate, and good repeatability. | Costly reagents. Time-consuming. Requires technical expertise. Chromatography cannot meet the requirements for in-field detection. | [7] |
Analyte | Plasmonic Method | Recognition Element | Analytical Parameters | Reference |
---|---|---|---|---|
Nitrite | LSPR | Satellite-like AuNPs | The linear of 0–1.0 mg mL−1, and the detection limit of 3.0 µg L−1 | [55] |
Ammonia | Oxazine-FOSPR | Oxazine 170 perchlorate | Limit of detection 1.4 mg L−1 | [57] |
Ammonia gas | FO-SPR | Oxazine 170 perchlorate | Limit of detection mg L−1 | [59] |
Ammonia | FO-SPR | Oxazine 170 perchlorate | Working range of 100 to 900 µg L−1. Sensitivity of 0.0036 mg L−1 | [60] |
Herbicides | FO-SPR | Microalgae Chlorella vulgaris | Limit of detection: 5nM for atrazine, 1 nm for simazine, 0.1 nM for diuron, 5 µM for alachlor, 0.1 mM for glyphosate | [61] |
Atrazine | FO-SPR | Molecularly imprinted polymers | Concentration range of 0 M–10−7 M. Sensitivity: 10−12 M | [67] |
Irgarol 1051 | Interferometric | Antibody | Limit of detection 3 ng L−1 | [40] |
Irgarol 1051 and tetracycline | Interferometric | Antibody | Limit of detection of 0.04 µg L−1 and dynamic range from 0.08-0.5 µg L−1 for tetracycline Limit of detection of 0.07 µg L−1 with a dynamic range from 0.2-12 µg L−1 Irgarol | [68] |
Simazine | SPR | Antibody IgG antibodies and FAB fragments | Limit of detection of 0.11 µg L−1 | [41] |
Carbaryl | SPR | Antibody | Working range of 2.78–3.55 µgL−1 | [48] |
Creatinine | FO-SPR | Enzyme creatinase | A sensitivity and limit of detection of 3.1 µM and 86.12 µM, respectively. Linear range of 0-2000 µM | [49] |
Cortisol | FO-SPR | Antibody | Working range of 0.01 to 100 µg L−1 with a limit of detection of 1.46 µg L−1 | [73] |
Cortisol | SPR | Antibody | Limit of detection of 1.0 µg L−1 (3.6 nM) | [74] |
Pathogenic bacteria Vibrio parahaemolyticus | SPR | DNA aptamers | Analysing concentrations of ss DNA from 680.1 ng µL−1 to 1196.6 ng µL−1 with efficiency from 92.98 to 98.15% | [79] |
Nervous necrosis virus | FO-SPR | Gold nanoparticles | Limit of detection of 100 µg L−1 | [80] |
Ciprofloxacin | SPR | Molecularly imprinted polymers | Limit of detection 7.1 µg L−1 | [84] |
Erythromycin | Surface plasmon resonance nanosensor | Molecularly imprinted nanoparticles | The linearity range and limit of detection were 0.99 and 0.29 mg L−1, respectively | [85] |
Erythromycin | FO-SPR | Molecularly imprinted polymers | Working range 0 to 50 µM. Its sensitivity was 5.32 nm µM−1 | [86] |
Ciprofloxacin | FO-SPR | Functionalised glutathione and mercaptopropionic acid nanoparticles | Working range from 0 to 45 µM with a detection limit of 0.90 µM | [87] |
Paralytic shellfish poisoning toxins | SPR | Antibody | Limit of detection 120 μg kg−1 | [97] |
Domoic acid (DA) and okadaic acid (OA), saxitoxin (STX), cylindrospermopsin (CYN), and microcystins (MC) | FO-SPR | Antibody | Limit of detection was 0.37 for DA, 0.44 for OA, 0.05 for STX, 0.08 for CYN, and 0.40 ng mL−1 for MC | [126] |
Tetrodotoxin | SPR | Antibody | Limit of detection 200 μg kg−1 | [98] |
Yesotoxin | SPR | Phosphodiesterase enzymes | Concentrations from concentrations 3 to 12µM. R = 0.9669 | [42] |
Domoic acid (DA), okadaic acid (OA), neosaxitoxin (NEO) and saxitoxin (SAX) | SPR | Antibody | Workings range of 1.0–6.4, 1.7–14.4, 1.1–6.0, and 1.0–3.7 ng mL−1 for DA, OA, NEO, and SAX, respectively | [128] |
Okadaic acid | FO-SPR | Antibody | Limit of detection of 0.2 μg per 100 g | [115] |
Okadaic acid | SPR | Antibody | Limit of detection 2.6 μg L−1 | [51] |
Saxitoxin | SPR | Calix [4] arene derivative monolayers | Working range of 1.0 × 10−9–1.0 × 10−5 M | [43] |
Saxitoxin | SPR | Antibody | Working range from 0 to 400 ng mL−1 | [102] |
Saxitoxin | LSPR | Aptamer | Limit of detection of 2.46 µg L−1 | [106] |
Microcystin-LR | FO-SPR | Antibody | Limit of detection of 0.03 μg L−1 | [120] |
Microcystins | SPR | Antibody | Limit of detection of 73 ± 8 ng L−1 | [121] |
Cylindrospermopsin | SPR | Antibody | Sensitivity of 4.4 to 11.1 ng mL−1 | [125] |
Putrescine | LSPR | Hollow Au−Ag nanoparticles | limit of detection of 13.8 mg L−1 | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintanilla-Villanueva, G.E.; Maldonado, J.; Luna-Moreno, D.; Rodríguez-Delgado, J.M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M.M. Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control. Biosensors 2023, 13, 90. https://doi.org/10.3390/bios13010090
Quintanilla-Villanueva GE, Maldonado J, Luna-Moreno D, Rodríguez-Delgado JM, Villarreal-Chiu JF, Rodríguez-Delgado MM. Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control. Biosensors. 2023; 13(1):90. https://doi.org/10.3390/bios13010090
Chicago/Turabian StyleQuintanilla-Villanueva, Gabriela Elizabeth, Jesús Maldonado, Donato Luna-Moreno, José Manuel Rodríguez-Delgado, Juan Francisco Villarreal-Chiu, and Melissa Marlene Rodríguez-Delgado. 2023. "Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control" Biosensors 13, no. 1: 90. https://doi.org/10.3390/bios13010090
APA StyleQuintanilla-Villanueva, G. E., Maldonado, J., Luna-Moreno, D., Rodríguez-Delgado, J. M., Villarreal-Chiu, J. F., & Rodríguez-Delgado, M. M. (2023). Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control. Biosensors, 13(1), 90. https://doi.org/10.3390/bios13010090