Rapid and Label-Free Analysis of Antigen–Antibody Dynamic Binding of Tumor Markers Using Piezoelectric Quartz Crystal Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. PZ Biosensor Surface Modification
2.4. Measurement Procedures
3. Results and Discussion
3.1. Measurement System of PZ Biosensor
3.2. Oscillation Study of Quartz Crystal Resonator
3.3. Optimal Immune Response Time Selection
3.4. Determination of Kinetic Constants
3.5. Optimal Standard Curve
3.6. Determination AFP Level in Clinical Serum Samples
3.7. Regeneration of PZ Quartz Crystal Biosensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebecca, L.S.; Kimberly, D.M.; Hannah, E.F. Cancer statistics, 2022. CA Cancer J Clin. 2022, 72, 7–33. [Google Scholar]
- Scarano, S.; Mascini, M.; Turner, A.P.F.; Minunni, M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens. Bioelectron. 2010, 25, 957–966. [Google Scholar] [CrossRef]
- Helmerhorst, E.; Chandler, D.J.; Nussio, M.; Mamotte, C.D. Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: A laboratory medicine perspective. Clin. Biochem. Rev. 2012, 33, 161–173. [Google Scholar]
- Sorensen, H.S.; Larsen, N.B.; Latham, J.C.; Bornhop, D.J.; Andersen, P.E. Highly sensitive biosensing based on interference from light scattering in capillary tubes. Appl. Phys. Lett. 2006, 89, 151108. [Google Scholar] [CrossRef]
- Latham, J.C.; Markov, D.A.; Sorensen, H.S.; Bornhop, D.J. Photobiotin surface chemistry improves label-free interferometric sensing of biochemical interactions. Angew. Chem. 2006, 118, 969–972. [Google Scholar] [CrossRef]
- Shah, N.B.; Duncan, T.M. Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects. J. Vis. Exp. 2014, 84, e51383. [Google Scholar]
- Archer, W.R.; Schulz, M.D. Isothermal titration calorimetry: Practical approaches and current applications in soft matter. Soft Matter. 2020, 16, 8760–8774. [Google Scholar] [CrossRef]
- Rich, R.L.; Myszka, D.G. Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol. 2000, 11, 54–61. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Sauerbrey, G.Z. The use of quartz oscillators for weighing layers and for micro-weighing. Z. Phys. A 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Latif, U.; Can, S.; Hayden, O.; Grillberger, P.; Dickert, F.L. Sauerbrey and anti-Sauerbrey behavioral studies in QCM sensors-detection of bioanalytes. Sens. Actuators B Chem. 2013, 176, 825–830. [Google Scholar] [CrossRef]
- Yang, L.; Huang, X.H.; Sun, L.; Xu, L. A piezoelectric immunosensor for the rapid detection of p16INK4a expression in liquid-based cervical cytology specimens. Sens. Actuators B Chem. 2016, 224, 863–867. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, S.S. QCM sensing of miR-21 by formation of microRNA-DNA hybrid duplexes and intercalation on surface-functionalized pyrene. Analyst 2019, 144, 6936–6943. [Google Scholar] [CrossRef]
- Suthar, J.; Parsons, E.S.; Hoogenboom, B.W.; Williams, G.R.; Guldin, S. Acoustic immunosensing of exosomes using a quartz crystal microbalance with dissipation monitoring. Anal. Chem. 2020, 92, 4082–4093. [Google Scholar] [CrossRef]
- Xu, T.; Miao, J.M.; Wang, Z.H.; Yu, L.; Li, C.M. Micro-piezoelectric immunoassay chip for simultaneous detection of Hepatitis B virus and α-fetoprotein. Sens. Actuators B Chem. 2011, 151, 370–376. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, I.; Soerjomataram, A.; Jemal, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Chhikara, B.S.; Parang, K. Global cancer statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2022, 10, 451. [Google Scholar]
- Torad, N.L.; Zhang, S.H.; Amer, W.A.; Ayad, M.M.; Kim, M.J.; Kim, J.H.; Ding, B.; Zhang, X.G.; Kimura, T.; Yamauchi, Y. Advanced nanoporous material-based QCM devices: A new horizon of interfacial mass sensing technology. Adv. Mater. Interfaces 2019, 6, 1900849. [Google Scholar] [CrossRef]
- Payam, A.F.; Kim, B.; Lee, D.; Bhalla, N. Unraveling the liquid gliding on vibrating solid liquid interfaces with dynamic nanoslip enactment. Nat. Commun. 2022, 13, 6608. [Google Scholar] [CrossRef]
- Camillone, N. Diffusion-limited thiol adsorption on the gold (111) surface. Langmuir 2004, 20, 1199–1206. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Battat, S.; Weitz, D.A.; Whitesides, G.M. An outlook on microfluidics: The promise and the challenge. Lab A Chip 2022, 22, 530–536. [Google Scholar] [CrossRef]
- Hajji, H.; Kolsi, L.; Hassen, W.; Al-Rashed, A.A.A.A.; Borjini, M.N.; Aichouni, M.A. Finite element simulation of antigen-antibody transport and adsorption in a microfluidic chip. Phys. E 2018, 104, 177–186. [Google Scholar] [CrossRef]
- Song, C.L.; Ma, Z.H.; Li, C.L.; Zhang, H.X.; Zhu, Z.Q.; Wang, J. Application of heat-enhancement for improving the sensitivity of quartz crystal microbalance. Biosensors 2022, 12, 643. [Google Scholar] [CrossRef]
- Feng, G.P. Resonant Sensing Theory and Devices, 1st ed.; Tsinghua University Press: Beijing, China, 2008; p. 274. [Google Scholar]
- Landry, J.P.; Fei, Y.Y.; Zhu, X.D. Simultaneous measurement of 10,000 protein-ligand affinity constants using microarray-based kinetic constant assays. Assay Drug Dev. Technol. 2012, 10, 250–259. [Google Scholar] [CrossRef]
- Alawajji, R.A.; Alsudani, Z.A.N.; Biris, A.S.; Kannarpady, G.K. Biosensor design for the detection of circulating tumor cells using the quartz crystal resonator technique. Biosensors 2023, 13, 433. [Google Scholar] [CrossRef]
- Josse, F.; Lee, Y. Analysis of the radial dependence of mass sensitivity for modified-electrode quartz crystal resonators. Anal. Chem. 1998, 70, 237–247. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, F.; Cao, W. Distinguishing mass loading effect from damping loading effect of piezoelectric immunosensor using energy transfer model. Sens. Mater. 2019, 31, 3055–3066. [Google Scholar]
Monitored Time (Min) | Flow Liquid Measurement | |||
---|---|---|---|---|
(Hz) | Rate of Antigen Binding (ng/min) | Average Antigen Binding Rate (ng/min) | Completion of Immunoreaction (%) | |
1 | 13 | 48.9 | 45.9 | 9.85 |
2 | 26 | 48.9 | 19.7 | |
3 | 39 | 48.9 | 29.5 | |
4 | 51 | 48 | 38.6 | |
5 | 63 | 47.4 | 47.7 | |
6 | 75 | 47 | 56.8 | |
7 | 86 | 46.2 | 65.2 | |
8 | 96 | 45.1 | 72.7 | |
9 | 105 | 43.9 | 79.5 | |
10 | 115 | 43.2 | 87.1 | |
11 | 124 | 42.4 | 93.9 | |
12 | 132 | 41.3 | 100 |
Monitored Time (Min) | Static Liquid Measurement | |||
---|---|---|---|---|
(Hz) | Rate of Antigen Binding (ng/min) | Average Antigen Binding Rate (ng/min) | Completion of Immunoreaction (%) | |
1 | 13 | 48.9 | 38.3 | 9.85 |
2 | 26 | 48.9 | 19.7 | |
3 | 38 | 47.6 | 28.8 | |
4 | 47 | 44 | 35.6 | |
5 | 55 | 41.4 | 41.7 | |
6 | 63 | 38.9 | 47.7 | |
7 | 70 | 37.6 | 53 | |
8 | 75 | 35.2 | 56.8 | |
9 | 78 | 32.6 | 59.1 | |
10 | 80 | 30 | 60.6 | |
11 | 82 | 28.4 | 62.1 | |
12 | 82 | 25.7 | 62.1 |
Sample | Fit Model | (M−1s−1) | (s−1) | KD (M) |
---|---|---|---|---|
Human AFP antigen | 1:1 Langmuir binding model |
Serum Samples | PZ Biosensor | RIA | Relative Deviation (%) | Correlation Coefficient (r) | ||
---|---|---|---|---|---|---|
AFP Levels (ng/mL) | Analysis Time | AFP Levels (ng/mL) | Analysis Time | |||
1 a | 22.6 | 12 min | 21.8 | 3 h | 3.7 | 0.9998 |
2 a | 20.7 | 21.4 | −3.3 | |||
3 a | 782.2 | 775.3 | 0.9 | |||
4 a | 24.4 | 24.9 | −2 | |||
5 b | 684.5 | 695.2 | −1.5 | |||
6 b | 921.4 | 913.7 | 0.8 | |||
7 b | 842.8 | 840.1 | 0.3 | |||
8 b | 759.7 | 747.9 | 1.6 | |||
9 c | 409.9 | 398.1 | 3 | |||
10 d | 21.8 | 22.2 | −1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Shi, H. Rapid and Label-Free Analysis of Antigen–Antibody Dynamic Binding of Tumor Markers Using Piezoelectric Quartz Crystal Biosensor. Biosensors 2023, 13, 917. https://doi.org/10.3390/bios13100917
Chen Y, Shi H. Rapid and Label-Free Analysis of Antigen–Antibody Dynamic Binding of Tumor Markers Using Piezoelectric Quartz Crystal Biosensor. Biosensors. 2023; 13(10):917. https://doi.org/10.3390/bios13100917
Chicago/Turabian StyleChen, Yan, and Huashan Shi. 2023. "Rapid and Label-Free Analysis of Antigen–Antibody Dynamic Binding of Tumor Markers Using Piezoelectric Quartz Crystal Biosensor" Biosensors 13, no. 10: 917. https://doi.org/10.3390/bios13100917
APA StyleChen, Y., & Shi, H. (2023). Rapid and Label-Free Analysis of Antigen–Antibody Dynamic Binding of Tumor Markers Using Piezoelectric Quartz Crystal Biosensor. Biosensors, 13(10), 917. https://doi.org/10.3390/bios13100917