High Specific and Rapid Detection of Cannabidiol by Gold Nanoparticle-Based Paper Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Synthesis of Hapten
2.3. Preparation of Antigen
2.4. Preparation of mAb
2.5. Preparation of GNP–mAb Conjugate
2.5.1. Preparation and Characterization of GNP
2.5.2. Determination of Optimum Amount of Potassium Carbonate
2.5.3. GNP–mAb Conjugate Preparation and Determination of Optimum Amount of mAb
2.6. Preparation of GICA Strips
2.6.1. Assembly of GICA Strips
2.6.2. Optimization of Envelope Concentration of T and C Lines
2.7. Analysis of Wine, Sparkling Water, and Sports Drink by GICA
2.8. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of Hapten and Antigen
3.2. Characterization of mAb
3.3. Preparation of GNP–mAb Conjugate
3.3.1. Characterization of GNP
3.3.2. Bioconjugation of GNP with mAb
3.4. Preparation of GICA Strips
3.4.1. Optimization of Envelope Concentration of T and C Lines
3.4.2. Sensitivity and Specificity of GICA Strips
3.4.3. Color Development Stability Time of GICA Strips
3.5. Analysis of Wine, Sparkling Water, and Sports Drink by GICA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chwistek, M. Cancer, cannabis, and the search for relief. J. Natl. Compr. Cancer Netw. 2019, 17, 1142–1144. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Shekher, A.; Puneet; Narula, A.S.; Abrahamse, H.; Gupta, S.C. Cannabis and its constituents for cancer: History, biogenesis, chemistry and pharmacological activities. Pharmacol. Res. 2021, 163, 105302. [Google Scholar] [CrossRef] [PubMed]
- Mechoulam, R.; Parker, L.A. The endocannabinoid system and the brain. Annu. Rev. Psychol. 2013, 64, 21–47. [Google Scholar] [CrossRef]
- Schluttenhofer, C.; Yuan, L. Challenges towards revitalizing hemp: A multifaceted crop. Trends Plant Sci. 2017, 22, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.; Kim, H.; Jang, S.; Lee, J.; Baeck, S.; In, S.; Kim, E.; Kim, Y.; Han, E. Concentrations of THC, CBD, and CBN in commercial hemp seeds and hempseed oil sold in Korea. Forensic Sci. Int. 2020, 306, 110064. [Google Scholar] [CrossRef]
- Dybowski, M.P.; Dawidowicz, A.L.; Typek, R.; Rombel, M. Conversion of cannabidiol (CBD) to Δ9-tetrahydrocannabinol (Δ9-THC) during protein precipitations prior to plasma samples analysis by chromatography–troubles with reliable CBD quantitation when acidic precipitation agents are applied. Talanta 2020, 220, 121390. [Google Scholar] [CrossRef]
- Watanabe, K.; Itokawa, Y.; Yamaori, S.; Funahashi, T.; Kimura, T.; Kaji, T.; Usami, N.; Yamamoto, I. Conversion of cannabidiol to ∆9-tetrahydrocannabinol and related cannabinoids in artificial gastric juice, and their pharmacological effects in mice. Forensic Toxicol. 2007, 25, 16–21. [Google Scholar] [CrossRef]
- Czégény, Z.; Nagy, G.; Babinszki, B.; Bajtel, Á.; Csupor, D. CBD, a precursor of THC in e-cigarettes. Sci. Rep. 2021, 11, 8951. [Google Scholar] [CrossRef]
- Food and Drug Administration. FDA Responds to Three GRAS Notices for Hemp Seed-Derived Ingredients for Use in Human Food. Available online: https://www.fda.gov/food/cfsan-constituent-updates/fda-responds-three-gras-notices-hemp-seed-derived-ingredients-use-human-food (accessed on 10 January 2023).
- Ambach, L.; Penitschka, F.; Broillet, A.; Konig, S.; Weinmann, W.; Bernhard, W. Simultaneous quantification of delta-9-THC, THC-acid A, CBN and CBD in seized drugs using HPLC-DAD. Forensic Sci. Int. 2014, 243, 107–111. [Google Scholar] [CrossRef]
- Galettis, P.; Williams, M.; Gordon, R.; Martin, J.H. A simple isocratic HPLC method for the quantitation of 17 cannabinoids. Aust. J. Chem. 2021, 74, 453–462. [Google Scholar] [CrossRef]
- Meng, Q.; Beth, B.; Jonathan, Z.; Mathieu-Marc, P.; Joseph, G.; Charles, B.D. A reliable and validated LC-MS/MS method for the simultaneous quantification of 4 cannabinoids in 40 consumer products. PLoS ONE 2018, 13, e0196396. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Amaratunga, P.; Reed, J.; Huang, P.; Lemberg, B.L.; Lemberg, D. Quantitation of Δ8-THC, Δ9-THC, cannabidiol, and ten other cannabinoids and metabolites in oral fluid by HPLC-MS/MS. J. Anal. Toxicol. 2022, 46, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.A.; Gul, W.; Gul, S.W.; Stamper, B.J.; Hadad, G.M.; Salam, R.A.A. Determination of acid and neutral cannabinoids in extracts of different strains of Cannabis sativa using GC-FID. Planta Medica 2018, 84, 250–259. [Google Scholar] [CrossRef]
- Cardenia, V.; Gallina, T.T.; Scappini, S.; Rubino, R.C.; Rodriguez-Estrada, M.T. Development and validation of a fast gas chromatography/mass spectrometry method for the determination of cannabinoids in Cannabis sativa L. J. Food Drug Anal. 2018, 26, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Poklis, J.L.; Mulder, H.A.; Peace, M.R. The unexpected identification of the cannabimimetic, 5F-ADB, and dextromethorphan in commercially available cannabidiol e-liquids. Forensic Sci. Int. 2019, 294, e25–e27. [Google Scholar] [CrossRef]
- Marchetti, L.; Brighenti, V.; Rossi, M.C.; Sperlea, J.; Pellati, F.; Bertelli, D. Use of 13C-qNMR spectroscopy for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (Hemp). Molecules 2019, 24, 1138. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xu, X.; Zhao, J.; Hu, S.; Xu, L.; Kuang, H.; Xu, C. Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor. Nano Res. 2022, 15, 5483–5491. [Google Scholar] [CrossRef]
- Lei, X.; Xu, X.; Liu, L.; Xu, L.; Wang, L.; Kuang, H.; Xu, C. Gold-nanoparticle-based multiplex immune-strip biosensor for simutaneous detection of 83 antibiotics. Nano Res. 2022, 16, 1259–1268. [Google Scholar] [CrossRef]
- García-Fernández, J.; Trapiella-Alfonso, L.; Costa-Fernández, J.M.; Pereiro, R.; Sanz-Medel, A. A quantum dot-based immunoassay for screening of tetracyclines in bovine muscle. J. Agric. Food Chem. 2014, 62, 1733–1740. [Google Scholar] [CrossRef]
- Chen, G.; Jin, M.; Ma, J.; Yan, M.; Cui, X.; Wang, Y.; Zhang, X.; Li, H.; Zheng, W.; Zhang, Y.; et al. Competitive bio-barcode immunoassay for highly sensitive detection of parathion based on bimetallic nanozyme catalysis. J. Agric. Food Chem. 2020, 68, 660–666. [Google Scholar] [CrossRef]
- Quan, Q.; Liu, Z.; Li, Z.; Pan, K.; Koidis, A.; Lei, Y.; Yu, X.; Mo, Q.; Huang, X.; Lei, H. Authenticating emergent adulterant 6-benzylaminopurine in bean sprouts: Virtual hapten similarity enhanced immunoassay. J. Agric. Food Chem. 2023, 71, 8203–8210. [Google Scholar] [CrossRef]
- Kwon, E.Y.; Ruan, X.; Yu, F.; Lin, Y.; Du, D.; Wie, B.J.V. Simultaneous detection of two herbicides in fruits and vegetables with nanoparticle-linked immunosorbent and lateral flow immunoassays. Food Chem. 2023, 399, 133955. [Google Scholar] [CrossRef]
- Liu, T.; Lai, X.; Guo, P.; Zhang, W.; Zhang, G.; Wu, M. Sensitive lateral flow immunoassay strips based on Fe3+-chelated polydopamine nanospheres for the detection of kanamycin. Food Chem. 2023, 411, 135511. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Huang, X.; Deng, Y.; Chen, H.; Fan, M.; Gong, Z. Applications of nanomaterial-based chemiluminescence sensors in environmental analysis. TrAC Trend Anal. Chem. 2023, 158, 116879. [Google Scholar] [CrossRef]
- Panferov, V.G.; Zherdev, A.V.; Dzantiev, B.B. Post-assay chemical enhancement for highly sensitive lateral flow immunoassays: Acritical review. Biosensors 2023, 13, 866. [Google Scholar] [CrossRef]
- Kropaneva, M.; Khramtsov, P.; Bochkova, M.; Lazarev, S.; Kiselkov, D.; Rayev, M. Vertical flow immunoassay based on carbon black nanoparticles for the detection of IgG against SARS-CoV-2 spike protein in human serum: Proof-of-concept. Biosensors 2023, 13, 857. [Google Scholar] [CrossRef] [PubMed]
- Majdinasab, M.; Chapelle, M.L.; Marty, J.L. Recent progresses in optical biosensors for interleukin 6 detection. Biosensors 2023, 13, 898. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Ma, T.; Yang, J.; Li, S.; Liu, S.; Wang, S. Development of lateral flow immunochromatographic assays using colloidal Au sphere and nanorods as signal marker for the determination of zearalenone in cereals. Foods 2020, 9, 281. [Google Scholar] [CrossRef]
- Jazayeri, M.H.; Amani, H.; Pourfatollah, A.A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Bio-Sens. Res. 2016, 9, 17–22. [Google Scholar] [CrossRef]
- Parnsubsakul, A.; Sapcharoenkun, C.; Warin, C.; Ekgasit, S.; Pienpinijtham, P. Selection of cryoprotectants for freezing and freeze-drying of gold nanoparticles towards further uses in various applications. Colloid Surface B 2022, 217, 112702. [Google Scholar] [CrossRef]
- Solin, K.; Vuoriluoto, M.; Khakalo, A.; Tammelin, T. Cannabis detection with solid sensors and paper-based immunoassays by conjugating antibodies to nanocellulose. Carbohydr. Polym. 2023, 304, 120517. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Xu, X.; Guo, L.; Xu, L.; Liu, L.; Kuang, H.; Xu, C. Development of a gold nanoparticle-based lateral-flow strip for the detection of cannabidiol in functional beverages. Analyst 2023, 148, 1703. [Google Scholar] [CrossRef] [PubMed]
- Peng, J. Rapid Immunoassay for Three Important Fishery Drugs Residue. Ph.D. Thesis, Jiangnan University, Wuxi, China, 2016. [Google Scholar]
- Xu, X.; Guo, L.; Kuang, H.; Xu, L.; Xu, C.; Liu, L. Preparation of a broad-specific monoclonal antibody and development of an immunochromatographic assay for monitoring of anthranilic diamides in vegetables and fruits. Analyst 2022, 147, 5149. [Google Scholar] [CrossRef]
- Kuang, H.; Liu, L.; Xu, L.; Ma, W.; Guo, L.; Wang, L.; Xu, C. Development of an enzyme-linked immunosorbent assay for dibutyl phthalate in liquor. Sensors 2013, 13, 8331. [Google Scholar] [CrossRef] [PubMed]
- Cordell, J. Developing monoclonal antibodies for immunohistochemistry. Cells 2022, 11, 243. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Z.; Li, J.; Xu, R.; Ji, R.; Lin, J.; Zhu, C. Preparation of colloidal gold immunochromatographic test strips for the diagnosis of Toxoplasma gondii. Food Agric. Immunol. 2020, 31, 630–641. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, L.; Liu, L.; Kuang, H.; Xu, C. Colloidal gold-based immunochromatographic strip assay for the rapid detection of three natural estrogens in milk. Food Chem. 2018, 259, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Suryoprabowo, S.; Liu, L.; Zheng, Q.; Wu, X.; Kuang, H. Development of an immunochromatographic strip test for rapid detection of sodium nifurstyrenate in fish. Food Agric. Immunol. 2019, 30, 236–247. [Google Scholar] [CrossRef]
- Fernández-Hernández, R.C.; Gleason-Villagran, R.; Torres-Torres, C.; Rodríguez-Fernández, L.; Crespo-Sosa, A.; Cheang-Wong, J.C.; López-Suárez, A.; Rangel-Rojo, R.; Oliver, A.; Reyes-Esqueda, J.A. On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites. J. Opt. 2012, 14, 125203. [Google Scholar] [CrossRef]
- Kong, D.; Liu, L.; Song, S.; Suryoprabowo, S.; Li, A.; Kuang, H.; Wang, L.; Xu, C. A gold nanoparticle-based semiquantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253. [Google Scholar] [CrossRef]
- Keith, J.A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.; Gastegger, M.; Müller, K.R.; Tkatchenko, A. Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 2021, 121, 9816–9872. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, N.; Yang, S.; Qiu, G.; Tian, H.; Sun, B. Research progress in the synthesis of stable isotopes of food flavour compounds. Food Chem. 2023, 435, 137635. [Google Scholar] [CrossRef] [PubMed]
Sample | Added Level (μg/mL) | Found Value (μg/mL) | Recovery Rate (%) | Coefficient of Variation (%) |
---|---|---|---|---|
Wine | 5 | 5.46 | 109.2 ± 4.8 | 4.38 |
20 | 18.62 | 93.1 ± 4.1 | 1.10 | |
30 | 27.33 | 91.1 ± 3.8 | 0.70 | |
40 | 35.36 | 88.4 ± 3.0 | 0.43 | |
Sparkling water | 5 | 5.39 | 107.8 ± 2.2 | 2.07 |
20 | 18.79 | 94.0 ± 5.2 | 1.38 | |
30 | 28.15 | 93.8 ± 7.2 | 1.27 | |
40 | 35.97 | 89.9 ± 8.1 | 1.12 | |
Sports drink | 5 | 4.77 | 95.5 ± 6.1 | 6.34 |
20 | 16.65 | 83.2 ± 8.2 | 2.47 | |
30 | 26.93 | 89.8 ± 7.2 | 1.33 | |
40 | 34.72 | 86.8 ± 6.1 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhu, D.; Tao, R.; Li, L.; Fan, B.; Wang, F. High Specific and Rapid Detection of Cannabidiol by Gold Nanoparticle-Based Paper Sensor. Biosensors 2023, 13, 960. https://doi.org/10.3390/bios13110960
Sun Y, Zhu D, Tao R, Li L, Fan B, Wang F. High Specific and Rapid Detection of Cannabidiol by Gold Nanoparticle-Based Paper Sensor. Biosensors. 2023; 13(11):960. https://doi.org/10.3390/bios13110960
Chicago/Turabian StyleSun, Yufeng, Dong Zhu, Ran Tao, Long Li, Bei Fan, and Fengzhong Wang. 2023. "High Specific and Rapid Detection of Cannabidiol by Gold Nanoparticle-Based Paper Sensor" Biosensors 13, no. 11: 960. https://doi.org/10.3390/bios13110960
APA StyleSun, Y., Zhu, D., Tao, R., Li, L., Fan, B., & Wang, F. (2023). High Specific and Rapid Detection of Cannabidiol by Gold Nanoparticle-Based Paper Sensor. Biosensors, 13(11), 960. https://doi.org/10.3390/bios13110960