Screening and Evaluation of Thiamethoxam Aptamer Based on Pressurized GO-SELEX and Its Sensor Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SELEX
2.3. Round Affinity Analysis
2.4. HTS and Secondary Structure Prediction
2.5. Measurement Dissociation Constant (Kd) by ITC
2.6. Analysis and Verification of the Binding of Aptamer and Thiamethoxam
2.7. Thiamethoxam Detection with AuNPs Colorimetric Sensor
3. Results and Discussion
3.1. Screening of Thiamethoxam Aptamers
3.2. Round Affinity Analysis
3.3. HTS and Secondary Structure Analysis of Sequences
3.4. Measurement of Sequence Affinity by ITC
3.5. The Binding of Aptamer and Thiamethoxam
3.6. Detection of Thiamethoxam by Aunps Colorimetric Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maienfisch, P.; Angst, M.; Brandl, F.; Fischer, W.; Hofer, D.; Kayser, H.; Kobel, W.; Rindlisbacher, A.; Senn, R.; Steinemann, A.; et al. Chemistry and biology of thiamethoxam: A second generation neonicotinoid. Pest Manag. Sci. 2001, 57, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Maienfisch, P.; Huerlimann, H.; Rindlisbacher, A.; Gsell, L.; Dettwiler, H.; Haettenschwiler, J.; Sieger, E.; Walti, M. The discovery of thiamethoxam: A second-generation neonicotinoid. Pest Manag. Sci. 2001, 57, 165–176. [Google Scholar] [CrossRef]
- Yamamoto, I.; Tomizawa, M.; Saito, T.; Miyamoto, T.; Walcott, E.C.; Sumikawa, K. Structural factors contributing to insecticidal and selective actions of neonicotinoids. Arch. Insect Biochem. Physiol. 1998, 37, 24–32. [Google Scholar] [CrossRef]
- Henry, M.; Beguin, M.; Requier, F.; Rollin, O.; Odoux, J.F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A Common Pesticide Decreases Foraging Success and Survival in Honey Bees. Science 2012, 336, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Tosi, S.; Burgio, G.; Nieh, J.C. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci. Rep. 2017, 7, 1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Li, W.; Zha, J.; Li, N.; Wang, Z. Chronic thiamethoxam exposure impairs the HPG and HPT axes in adult Chinese rare minnow (Gobiocypris rarus): Docking study, hormone levels, histology, and transcriptional responses. Ecotoxicol. Environ. Saf. 2019, 185, 109683. [Google Scholar] [CrossRef]
- Goulson, D.; Kleijn, D. REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Han, W.; Tian, Y.; Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere 2018, 192, 59–65. [Google Scholar] [CrossRef]
- Jyot, G.; Singh, B. Development and Validation of an HPLC Method for Determination of Thiamethoxam and Its Metabolites in Cotton Leaves and Soil. J. Aoac Int. 2017, 100, 796–803. [Google Scholar] [CrossRef]
- Suganthi, A.; Nikita, S.A.; Kousika, J.; Bhuvaneswari, K.; Sridharan, S. Determination of thiamethoxam residues in banana stem and fruit through LC-MS/MS. Environ. Monit. Assess. 2018, 190, 293. [Google Scholar] [CrossRef]
- Ting, G.; Gui, F.J.; Jin, X.; Shi, J.G.; Xiao, F.L.; Yu, P.Z.; De, Y.H. Determination of the residue dynamics and dietary risk of thiamethoxam and its metabolite clothianidin in citrus and soil by LC-MS/MS. J. Environ. Sci. Health B (Pestic. Food Contam. Agric. Wastes) 2019, 54, 326–335. [Google Scholar] [CrossRef]
- Ma, H.X.; Xu, Y.J.; Li, Q.X.; Xu, T.; Wang, X.T.; Li, J. Application of enzyme-linked immunosorbent assay for quantification of the insecticides imidacloprid and thiamethoxam in honey samples. Food Addit. Contam. Part A-Chem. Anal. Control. Exp. Risk Assess. 2009, 26, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. Invitro Selection of Rna Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment-Rna Ligands to Bacteriophage-T4 Dna-Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Saito, S. SELEX-based DNA Aptamer Selection: A Perspective from the Advancement of Separation Techniques. Anal. Sci. 2021, 37, 17–26. [Google Scholar] [CrossRef]
- Ruscito, A.; DeRosa, M.C. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications. Front. Chem. 2016, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.L.; Yang, S.M. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 2015, 71, 230–242. [Google Scholar] [CrossRef]
- Xu, S.T.; Liu, J.K.; Xue, Y.; Wu, T.Y.; Zhang, Z.F. Appropriate conditions for preparing few-layered graphene oxide and reduced graphene oxide. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 40–46. [Google Scholar] [CrossRef]
- Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224. [Google Scholar] [CrossRef]
- Cui, L.; Chen, Z.R.; Zhu, Z.; Lin, X.Y.; Chen, X.; Yang, C.J. Stabilization of ssRNA on Graphene Oxide Surface: An Effective Way to Design Highly Robust RNA Probes. Anal. Chem. 2013, 85, 2269–2275. [Google Scholar] [CrossRef]
- Balaban, S.; Man, E.; Durmus, C.; Bor, G.; Ceylan, A.E.; Gumus, Z.P.; Evran, S.; Coskunol, H.; Timur, S. Sensor Platform with a Custom-Tailored Aptamer for Diagnosis of Synthetic Cannabinoids. Electroanalysis 2020, 32, 656–665. [Google Scholar] [CrossRef]
- Bor, G.; Man, E.; Ugurlu, O.; Ceylan, A.E.; Balaban, S.; Durmus, C.; Pinar Gumus, Z.; Evran, S.; Timur, S. in vitro Selection of Aptamer for Imidacloprid Recognition as Model Analyte and Construction of a Water Analysis Platform. Electroanalysis 2020, 32, 1922–1929. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Yang, X.R. Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sens. Actuators B-Chem. 2011, 156, 95–99. [Google Scholar] [CrossRef]
- Titelman, G.I.; Gelman, V.; Bron, S.; Khalfin, R.L.; Cohen, Y.; Bianco-Peled, H. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 2005, 43, 641–649. [Google Scholar] [CrossRef]
- Guan, J.; He, K.; Gunasekaran, S. Selection of ssDNA aptamer using GO-SELEX and development of DNA nanostructure-based electrochemical aptasensor for penicillin. Biosens. Bioelectron. X 2022, 12, 100220. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, S.H.; Ko, Y.; Park, J.C.; Ji, S.; Gu, M.B. The sensitive detection of ODAM by using sandwich-type biosensors with a cognate pair of aptamers for the early diagnosis of periodontal disease. Biosens. Bioelectron. 2019, 126, 122–128. [Google Scholar] [CrossRef]
- Luo, Y.; Jin, Z.; Wang, J.; Ding, P.; Pei, R. The isolation of a DNA aptamer to develop a fluorescent aptasensor for the thiamethoxam pesticide. Analyst 2021, 146, 1986–1995. [Google Scholar] [CrossRef]
- Kong, Q.; Yue, F.; Liu, M.; Huang, J.; Yang, F.; Liu, J.; Li, J.; Li, F.; Sun, X.; Guo, Y.; et al. Non-immobilized GO-SELEX of aptamers for label-free detection of thiamethoxam in vegetables. Anal. Chim. Acta 2022, 1202, 339677. [Google Scholar] [CrossRef]
- Maye, M.M.; Han, L.; Kariuki, N.N.; Ly, N.K.; Chan, W.B.; Luo, J.; Zhong, C.J. Gold and alloy nanoparticles in solution and thin film assembly: Spectrophotometric determination of molar absorptivity. Anal. Chim. Acta 2003, 496, 17–27. [Google Scholar] [CrossRef]
Aptamer | 40nt Sequences (5′-3′) | Free Energy (kcal/mol) |
---|---|---|
Thi-5R-6 | CGAGCTGAGATTGGGGAACTCGACGACAGTCAAGGGTCTG | −9.78 |
Thi-5R-18 | GGGCAAATAGCATAATGGATCACATTAGATGAGCCCAGGC | −7.4 |
Thi-9R-18 | GCGGCAGCAGCAGCCCGCCCGTGACTCAGCAGTCTGCCCG | −11.4 |
Thi-9R-26 | CCAGCACCCACCGGTGGGGACGCCGCGCCGCCTGCCGCCC | −8.24 |
Sample | Spiked Concentration (nM) | Measured Concentration a (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 100 | 105.40 | 105.40 | 1.88 |
2 | 80 | 84.69 | 105.86 | 0.41 |
3 | 40 | 38.78 | 96.94 | 3.76 |
4 | 20 | 19.61 | 98.03 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Y.; Zhang, D.; Tian, K.; Ni, D.; Guo, F.; Yu, Z.; Wang, P.; Liang, P. Screening and Evaluation of Thiamethoxam Aptamer Based on Pressurized GO-SELEX and Its Sensor Application. Biosensors 2023, 13, 155. https://doi.org/10.3390/bios13020155
Yue Y, Zhang D, Tian K, Ni D, Guo F, Yu Z, Wang P, Liang P. Screening and Evaluation of Thiamethoxam Aptamer Based on Pressurized GO-SELEX and Its Sensor Application. Biosensors. 2023; 13(2):155. https://doi.org/10.3390/bios13020155
Chicago/Turabian StyleYue, Yaqi, De Zhang, Kangfei Tian, Dejiang Ni, Fei Guo, Zhi Yu, Pu Wang, and Pei Liang. 2023. "Screening and Evaluation of Thiamethoxam Aptamer Based on Pressurized GO-SELEX and Its Sensor Application" Biosensors 13, no. 2: 155. https://doi.org/10.3390/bios13020155
APA StyleYue, Y., Zhang, D., Tian, K., Ni, D., Guo, F., Yu, Z., Wang, P., & Liang, P. (2023). Screening and Evaluation of Thiamethoxam Aptamer Based on Pressurized GO-SELEX and Its Sensor Application. Biosensors, 13(2), 155. https://doi.org/10.3390/bios13020155