Skin-Inspired Tactile Sensor on Cellulose Fiber Substrates with Interfacial Microstructure for Health Monitoring and Guitar Posture Feedback
Abstract
:1. Introduction
2. Materials and Methods
2.1. Contact Resistance at Interfaces
2.2. Device Fabrication and Assembly
2.3. Characterization Methodologies
3. Results
3.1. Properties of Carbon Inks
3.2. Morphological Analysis of Screen-Printed Substrates
3.3. Electrical Characterization
3.4. Theoretical Model and Physical Analysis
3.5. Demonstration of Wearable Applications
3.5.1. Vital Sign Detection
3.5.2. Posture Feedback during Guitar Playing Application
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trung, T.Q.; Lee, N.-E. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare. Adv. Mater. 2016, 28, 4338–4372. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Yu, Y.; Wu, S.; Wang, C.-H. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications. ACS Appl. Mater. Interfaces 2021, 13, 43831–43854. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Amjadi, M.; Lee, T.-I.; Jeong, Y.; Kwon, D.; Kim, M.S.; Kim, K.; Kim, T.-S.; Oh, Y.S.; Park, I. Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices. ACS Appl. Mater. Interfaces 2019, 11, 23639–23648. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Yang, W.Q.; Zhang, T.; Jing, Q.; Chen, J.; Zhou, Y.S.; Bai, P.; Wang, Z.L. Self-Powered, Ultrasensitive, Flexible Tactile Sensors Based on Contact Electrification. Nano Lett. 2014, 14, 3208–3213. [Google Scholar] [CrossRef]
- Xue, J.; Zou, Y.; Deng, Y.; Li, Z. Bioinspired Sensor System for Health Care and Human-Machine Interaction. EcoMat 2022, 4, e12209. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.; Li, H.; Yang, Q.; Wang, H.; Shan, C.; Zhang, J.; Hou, X.; Chen, F. Femtosecond Laser-Induced Supermetalphobicity for Design and Fabrication of Flexible Tactile Electronic Skin Sensor. ACS Appl. Mater. Interfaces 2022, 14, 38328–38338. [Google Scholar] [CrossRef]
- Tat, T.; Chen, G.; Zhao, X.; Zhou, Y.; Xu, J.; Chen, J. Smart Textiles for Healthcare and Sustainability. ACS Nano 2022, 16, 13301–13313. [Google Scholar] [CrossRef]
- Zhang, S.; Tu, T.; Li, T.; Cai, Y.; Wang, Z.; Zhou, Y.; Wang, D.; Fang, L.; Ye, X.; Liang, B. 3D MXene/PEDOT:PSS Composite Aerogel with a Controllable Patterning Property for Highly Sensitive Wearable Physical Monitoring and Robotic Tactile Sensing. ACS Appl. Mater. Interfaces 2022, 14, 23877–23887. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, L.; Chen, J.; Chang, X.; Zhu, Y. Flexible and Transparent Pressure/Temperature Sensors Based on Ionogels with Bioinspired Interlocked Microstructures. ACS Appl. Mater. Interfaces 2022, 14, 2122–2131. [Google Scholar] [CrossRef]
- Li, W.; Guo, J.; Fan, D. 3D Graphite–Polymer Flexible Strain Sensors with Ultrasensitivity and Durability for Real-Time Human Vital Sign Monitoring and Musical Instrument Education. Adv. Mater. Technol. 2017, 2, 1700070. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, F.; Di, C.; Zhu, D. Advances of Flexible Pressure Sensors toward Artificial Intelligence and Health Care Applications. Mater. Horiz. 2015, 2, 140–156. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Sun, Y.; Zhang, Y.; Ding, G. Recent Advances in Resistive Sensor Technology for Tactile Perception: A Review. IEEE Sens. J. 2022, 22, 15635–15649. [Google Scholar] [CrossRef]
- Stefanou, T.; Chance, G.; Assaf, T.; Dogramadzi, S. Tactile Signatures and Hand Motion Intent Recognition for Wearable Assistive Devices. Front. Robot. AI 2019, 6, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Park, J.; Choe, A.; Cho, S.; Kim, J.; Ko, H. Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Adv. Funct. Mater. 2020, 30, 1904523. [Google Scholar] [CrossRef]
- Low, Z.W.K.; Li, Z.; Owh, C.; Chee, P.L.; Ye, E.; Kai, D.; Yang, D.-P.; Loh, X.J. Using Artificial Skin Devices as Skin Replacements: Insights into Superficial Treatment. Small 2019, 15, 1805453. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, J.S.; Wanat, K.; Seykora, J. Skin: Basic Structure and Function. In Pathobiology of Human Disease; McManus, L.M., Mitchell, R.N., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 1134–1144. ISBN 978-0-12-386457-4. [Google Scholar]
- Chen, J.; Li, L.; Zhu, Z.; Luo, Z.; Tang, W.; Wang, L.; Li, H. Bioinspired Design of Highly Sensitive Flexible Tactile Sensors for Wearable Healthcare Monitoring. Mater. Today Chem. 2022, 23, 100718. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Lee, Y.; Lee, H.S.; Ko, H. Fingertip Skin–Inspired Microstructured Ferroelectric Skins Discriminate Static/Dynamic Pressure and Temperature Stimuli. Sci. Adv. 2015, 1, e1500661. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y.-D.; Lim, H.; Kim, S.Y.; Ko, H. Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins. ACS Nano 2014, 8, 4689–4697. [Google Scholar] [CrossRef]
- Ha, M.; Lim, S.; Cho, S.; Lee, Y.; Na, S.; Baig, C.; Ko, H. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors. ACS Nano 2018, 12, 3964–3974. [Google Scholar] [CrossRef]
- Pang, Y.; Zhang, K.; Yang, Z.; Jiang, S.; Ju, Z.; Li, Y.; Wang, X.; Wang, D.; Jian, M.; Zhang, Y.; et al. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. ACS Nano 2018, 12, 2346–2354. [Google Scholar] [CrossRef]
- Pang, Y.; Xu, X.; Chen, S.; Fang, Y.; Shi, X.; Deng, Y.; Wang, Z.-L.; Cao, C. Skin-Inspired Textile-Based Tactile Sensors Enable Multifunctional Sensing of Wearables and Soft Robots. Nano Energy 2022, 96, 107137. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, S.; Mei, D.; Jin, J. A Flexible Tactile Sensor with Dual-Interlocked Structure for Broad Range Force Sensing and Gaming Applications. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Lin, W.; Wang, B.; Peng, G.; Shan, Y.; Hu, H.; Yang, Z. Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli. Adv. Sci. 2021, 8, 2002817. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Zhou, Q.; Lei, M.; Ding, S.; Song, Q.; Gao, Y.; Li, S.; Xu, Y.; Zhou, Y.; Zhou, B. Gradient Architecture-Enabled Capacitive Tactile Sensor with High Sensitivity and Ultrabroad Linearity Range. Small 2021, 17, 2103312. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Fu, J.; Cao, R.; Liu, J.; Wang, L. A Liquid Lens-Based Optical Sensor for Tactile Sensing. Smart Mater. Struct. 2022, 31, 035011. [Google Scholar] [CrossRef]
- Jung, S.; Kim, J.H.; Kim, J.; Choi, S.; Lee, J.; Park, I.; Hyeon, T.; Kim, D.-H. Reverse-Micelle-Induced Porous Pressure-Sensitive Rubber for Wearable Human–Machine Interfaces. Adv. Mater. 2014, 26, 4825–4830. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Ceron, S.; Kaiser, G.; Petersen, K. Simple, Low-Cost Fabrication of Soft Sensors for Shape Reconstruction. IEEE Robot. Autom. Lett. 2020, 5, 4049–4054. [Google Scholar] [CrossRef]
- Li, J.; Orrego, S.; Pan, J.; He, P.; Kang, S.H. Ultrasensitive, Flexible, and Low-Cost Nanoporous Piezoresistive Composites for Tactile Pressure Sensing. Nanoscale 2019, 11, 2779–2786. [Google Scholar] [CrossRef]
- Tao, L.-Q.; Zhang, K.-N.; Tian, H.; Liu, Y.; Wang, D.-Y.; Chen, Y.-Q.; Yang, Y.; Ren, T.-L. Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano 2017, 11, 8790–8795. [Google Scholar] [CrossRef]
- Wang, C.; Dong, L.; Peng, D.; Pan, C. Tactile Sensors for Advanced Intelligent Systems. Adv. Intell. Syst. 2019, 1, 1900090. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhou, L.J.; Zhang, H.M.; Zhao, Z.X.; Dong, S.L.; Wei, S.; Zhao, J.; Wang, Z.L.; Guo, B.; Hu, P.A. Highly Sensitive Flexible Three-Axis Tactile Sensors Based on the Interface Contact Resistance of Microstructured Graphene. Nanoscale 2018, 10, 7387–7395. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, T.; Zhang, J.; Huang, J.; Tang, X.; Zhou, T.; Rong, Y.; Huang, Y.; Shi, S.; Zeng, D. A New Approach for an Ultrasensitive Tactile Sensor Covering an Ultrawide Pressure Range Based on the Hierarchical Pressure-Peak Effect. Nanoscale Horiz. 2020, 5, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Šilhavík, M.; Zafar, Z.A.; Červenka, J. Contact Resistance Based Tactile Sensor Using Covalently Cross-Linked Graphene Aerogels. Nanoscale 2022, 14, 1440–1451. [Google Scholar] [CrossRef] [PubMed]
- Shiau, C.-C.; Liao, Y.-C.; Kao, Z.-K.; Yeh, Y.-C.; Lu, Y.-W. Paper-Based Flexible Taxel Device Using Electrical Contact Resistance Variation for Elasticity Measurement on Biological Objects. IEEE Sens. J. 2013, 13, 4038–4044. [Google Scholar] [CrossRef]
- Chen, W.-L.; Liao, Y.-C.; Lu, Y.-W. A Wearable Tactile Sensor Based on Electrical-Contact-Resistance (ECR) Variation with High Sensitivity for Health Monitoring. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1116–1119. [Google Scholar]
- Karmakar, R.S.; Chu, C.-P.; Liao, Y.-C.; Lu, Y.-W. PVA Tactile Sensors Based on Electrical Contact Resistance (ECR) Change Mechanism for Subtle Pressure Detection. Sens. Actuator A Phys. 2022, 342, 113613. [Google Scholar] [CrossRef]
- Mishra, V.; Yang, F.; Pitchumani, R. Measurement and Prediction of Electrical Contact Resistance Between Gas Diffusion Layers and Bipolar Plate for Applications to PEM Fuel Cells. J. Fuel Cell Sci. Technol. 2004, 1, 2–9. [Google Scholar] [CrossRef]
- Majumdar, A.; Tien, C.L. Fractal Network Model for Contact Conductance. J. Heat Trans. 1991, 113, 516–525. [Google Scholar] [CrossRef]
- Majumdar, A.; Bhushan, B. Characterization and Modeling of Surface Roughness and Contact Mechanics. In Handbook of Micro/Nano Tribology; CRC Press: Boca Raton, FL, USA, 1999; ISBN 978-0-367-80252-3. [Google Scholar]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 4th ed.; McGraw-Hill, Health Professions Division: New York, NY, USA, 2000; ISBN 978-0-8385-7701-1. [Google Scholar]
- Carlson, B.M. Chapter 3—Skin. In The Human Body; Carlson, B.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 65–85. ISBN 978-0-12-804254-0. [Google Scholar]
- Abraira, V.E.; Ginty, D.D. The Sensory Neurons of Touch. Neuron 2013, 79, 618–639. [Google Scholar] [CrossRef] [Green Version]
- Kolarsick, P.A.J.; Kolarsick, M.A.; Goodwin, C. Anatomy and Physiology of the Skin. J. Dermatol. Nurses Assoc. 2011, 3, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Sykes, B.; Puddle, B.; Francis, M.; Smith, R. The Estimation of Two Collagens from Human Dermis by Interrupted Gel Electrophoresis. Biochem. Biophys. Res. Commun. 1976, 72, 1472–1480. [Google Scholar] [CrossRef]
- Ma, Z.; Ai, J.; Zhang, X.; Du, Z.; Wu, Z.; Wang, K.; Chen, D.; Su, B. Merkel’s Disks Bioinspired Self-Powered Flexible Magnetoelectric Sensors Toward the Robotic Arm’s Tactile Perceptual Functioning and Smart Learning. Adv. Intell. Syst. 2020, 2, 1900140. [Google Scholar] [CrossRef] [Green Version]
- MacKinnon, C.D. Chapter 1—Sensorimotor Anatomy of Gait, Balance, and Falls. In Handbook of Clinical Neurology; Day, B.L., Lord, S.R., Eds.; Balance, Gait, and Falls; Elsevier: Amsterdam, The Netherlands, 2018; Volume 159, pp. 3–26. [Google Scholar]
- Edwards, H.G.M. CHAPTER 1 Analytical Raman Spectroscopy of Inks. In Raman Spectroscopy in Archaeology and Art History: Volume 2; The Royal Society of Chemistry: London, UK, 2019; Volume 2, pp. 1–15. ISBN 978-1-78801-138-9. [Google Scholar]
- McCreery, R.L. Raman Spectroscopy for Chemical Analysis; Chemical Analysis; John Wiley & Sons: New York, NY, USA, 2000; ISBN 978-0-471-25287-0. [Google Scholar]
- Zuikafly, S.N.F.; Khalifa, A.; Ahmad, F.; Shafie, S.; Harun, S. Conductive Graphene as Passive Saturable Absorber with High Instantaneous Peak Power and Pulse Energy in Q-Switched Regime. Results Phys. 2018, 9, 371–375. [Google Scholar] [CrossRef]
- Woodward, R.I.; Kelleher, E.J.R. 2D Saturable Absorbers for Fibre Lasers. Appl. Sci. 2015, 5, 1440–1456. [Google Scholar] [CrossRef] [Green Version]
- Johra, F.T.; Lee, J.-W.; Jung, W.-G. Facile and Safe Graphene Preparation on Solution Based Platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Saravanan, M.; Ganesan, M.; Ambalavanan, S. An in Situ Generated Carbon as Integrated Conductive Additive for Hierarchical Negative Plate of Lead-Acid Battery. J. Power Sources 2014, 251, 20–29. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef] [Green Version]
- Youssry, M.; Kamand, F.Z.; Magzoub, M.I.; Nasser, M.S. Aqueous Dispersions of Carbon Black and Its Hybrid with Carbon Nanofibers. RSC Adv. 2018, 8, 32119–32131. [Google Scholar] [CrossRef] [Green Version]
- Sreedhara, S.S.; Tata, N.R. A Novel Method for Measurement of Porosity in Nanofiber Mat Using Pycnometer in Filtration. J. Eng. Fibers Fabr. 2013, 8, 132–137. [Google Scholar] [CrossRef]
- Pawlaczyk, M.; Lelonkiewicz, M.; Wieczorowski, M. Age-Dependent Biomechanical Properties of the Skin. Adv. Dermatol. Allergol. 2013, 30, 302–306. [Google Scholar] [CrossRef]
- Sung, K.; Chang, J.; Freivalds, A.; Kong, Y.-K. Development of the Two-Dimensional Biomechanical Hand Model for a Guitar Player. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2013, 57, 1653–1657. [Google Scholar] [CrossRef]
- Rigg, J.L.; Marrinan, R.; Thomas, M.A. Playing-Related Injury in Guitarists Playing Popular Music. Med. Probl. Perform. Artist. 2003, 18, 150–152. [Google Scholar] [CrossRef]
- ROMBO Common Guitar-Related Injuries and How to Avoid Pain When Playing the Guitar. Available online: https://rombopicks.com/blogs/insight-rombo/common-guitar-related-injuries-and-how-to-avoid-pain-when-playing-the-guitar (accessed on 28 December 2022).
- Deja, J.A.; Tobias, J.P.; Roque, R.C.; David, D.G.; Chan, K.G. Towards Modeling Guitar Chord Fretboard Finger Positioning Using Electromyography. In Proceedings of the 17th Philippine Computing Science Congress, Cebu, Philippines, 16–18 March 2017. [Google Scholar]
- Karolus, J.; Schuff, H.; Kosch, T.; Wozniak, P.W.; Schmidt, A. EMGuitar: Assisting Guitar Playing with Electromyography. In Proceedings of the 2018 Designing Interactive Systems Conference, Association for Computing Machinery, New York, NY, USA, 8 June 2018; pp. 651–655. [Google Scholar]
Parameters | Ink1 | Ink2 |
---|---|---|
Thickness | 12 µm | 33.2 µm |
Average RMS roughness | 0.634 µm | 0.999 µm |
Cluster size | 50 nm | 96 nm |
Viscosity at 1 S-1 shear rate | 682.89 Pa.S | 2549.14 Pa.S |
Young’s Modulus | 4.417 GPa | 5.324 GPa |
Hardness | 0.094 GPa | 0.151 GPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmakar, R.S.; Chu, C.-P.; Li, C.-L.; Hsueh, C.-H.; Liao, Y.-C.; Lu, Y.-W. Skin-Inspired Tactile Sensor on Cellulose Fiber Substrates with Interfacial Microstructure for Health Monitoring and Guitar Posture Feedback. Biosensors 2023, 13, 174. https://doi.org/10.3390/bios13020174
Karmakar RS, Chu C-P, Li C-L, Hsueh C-H, Liao Y-C, Lu Y-W. Skin-Inspired Tactile Sensor on Cellulose Fiber Substrates with Interfacial Microstructure for Health Monitoring and Guitar Posture Feedback. Biosensors. 2023; 13(2):174. https://doi.org/10.3390/bios13020174
Chicago/Turabian StyleKarmakar, Rajat Subhra, Chia-Pei Chu, Chia-Lin Li, Chun-Hway Hsueh, Ying-Chih Liao, and Yen-Wen Lu. 2023. "Skin-Inspired Tactile Sensor on Cellulose Fiber Substrates with Interfacial Microstructure for Health Monitoring and Guitar Posture Feedback" Biosensors 13, no. 2: 174. https://doi.org/10.3390/bios13020174
APA StyleKarmakar, R. S., Chu, C. -P., Li, C. -L., Hsueh, C. -H., Liao, Y. -C., & Lu, Y. -W. (2023). Skin-Inspired Tactile Sensor on Cellulose Fiber Substrates with Interfacial Microstructure for Health Monitoring and Guitar Posture Feedback. Biosensors, 13(2), 174. https://doi.org/10.3390/bios13020174