A Monoclonal Antibody-Based Immunochromatographic Test Strip and Its Application in the Rapid Detection of Cucumber Green Mottle Mosaic Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Equipment
2.3. Preparation of the Immunogen
2.3.1. Source of Virus
2.3.2. Virus Inoculation
2.3.3. Immunogen Preparation
2.4. Preparation of the Monoclonal Antibody against CGMMV
2.5. Preparation of the Nanogold–mAb Probe
2.6. Assembly of the ICS Test
2.7. The Immunochromatographic Assay
2.8. Optimization of the ICS
2.8.1. Optimization of the Nitrocellulose Membrane
2.8.2. Optimization of the Buffer System Parameters for the ICS
3. Results
3.1. Preparation of the Monoclonal Antibodies
3.2. Pairing of the Monoclonal Antibodies
3.3. Optimization of the ICS
3.3.1. Optimization of the Nitrocellulose Membrane
3.3.2. Optimization of Buffer System Parameters for the ICS
Influence of Ionic Strength
Influence of pH
Influence of Tween-20
3.4. Specificity Assessment of the ICS Test
3.5. Stability Assessment of the ICS Test
3.6. Sensitivity Assessment of the ICS Test
3.7. Accuracy of the Test Strip (Field Sample Testing)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shargil, D.; Zemach, H.; Belausov, E.; Lachman, O.; Kamenetsky, R.; Dombrovsky, A. Development of a fluorescent in situ hybridization (FISH) technique for visualizing CGMMV in plant tissues. J. Virol. Methods 2015, 223, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Emran, A.; Tabei, Y.; Kobayashi, K.; Yamaoka, N.; Nishiguchi, M. Molecular Analysis of transgenic melon plants showing virus resistance conferred by direct repeat of movement gene of Cucumber green mottle mosaic virus. Plant Cell Rep. 2012, 31, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Z.; Xia, X.; Yang, C.; Huang, J.; Wan, S. Colorimetric detection of Cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes. J. Virol. Methods 2017, 243, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, C.; Kim, J.; Jung, H. Application of Optical Coherence Tomography to Detect Cucumber green mottle mosaic virus (CGMMV) Infected Cucumber Seed. Hortic. Environ. Biotechnol. 2012, 53, 428–433. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, W.; Gu, Q.; Chen, Q.; Lin, S.; Zhu, S. Real time TaqMan RT-PCR assay for the detection of Cucumber green mottle mosaic virus. J. Virol. Methods 2008, 149, 326–329. [Google Scholar]
- Yoon, J.; Choi, G.; Choi, S.; Hong, J.; Choi, J.; Kim, W.; Lee, G.; Ryu, K. Molecular and biological diversities of Cucumber green mottle mosaic virus from cucurbitaceous crops in Korea. J. Phytopathol. 2008, 156, 408–412. [Google Scholar] [CrossRef]
- Shim, C.K.; Lee, J.H.; Hong, S.M.; Han, K.S.; Kim, H.K. Construction of antibodies for detection and diagnosis of Cucumber green mottle mosaic virus from watermelon plants. Plant Pathol. J. 2006, 22, 1598–2254. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wei, Q.; Liu, Y.; Tan, X.; Zhang, W.; Wu, J.; Charimbu, M.; Hu, B.; Cheng, Z.; Yu, C.; et al. One-step reverse transcription loop-mediated isothermal amplification for the rapid detection of Cucumber green mottle mosaic virus. J. Virol. Methods 2013, 93, 583–588. [Google Scholar] [CrossRef]
- Yi, H.; Kim, H.; Kim, C.; Harn, C.; Kim, H.; Park, S. Using T-RFLP to assess the impact on soil microbial communities by transgenic lines of watermelon rootstock resistant to Cucumber green mottle mosaic virus (CGMMV). J. Plant Biol. 2009, 52, 577–584. [Google Scholar] [CrossRef]
- Zhang, M.; Li, M.; Hao, Y.; Xu, N.; Peng, L.; Wang, Y.; Wei, X. Novel monoclonal antibody-sandwich immunochromatographic assay based on Fe3O4/Au nanoparticles for rapid detection of fish allergen parvalbumin. Food Res. Int. 2021, 142, 110102. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, S.; Zhang, S.; Liu, J.; Dong, Y. State of the art: Lateral flow assay (LFA) biosensor for on-site rapid detection. Chin. Chem. Lett. 2018, 29, 1567–1577. [Google Scholar] [CrossRef]
- Sathongdejwisit, P.; Pruksaphon, K.; Intaramat, A.; Aiumurai, P.; Sookrung, N.; Ratanabanangkoon, K.; Nosanchuk, J.; Youngchim, S. A Novel, Inexpensive In-House Immunochromatographic Strip Test for Cryptococcosis Based on the Cryptococcal Glucuronoxylomannan Specific Monoclonal Antibody 18B7. Diagnostics 2021, 11, 758. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; He, C.; Li, Z.; Huo, J.; Xue, Y.; Xu, X.; Qi, M.; Chen, L.; Hammock, B.; Zhang, J. Development of a Rapid Gold Nanoparticle Immunochromatographic Strip Based on the Nanobody for Detecting 2,4-DichloRophenoxyacetic Acid. Biosensors 2022, 12, 84. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Chen, Z.; Niu, P.; Ren, X.; Ding, C.; Yu, S. Development of a colloidal gold immunochromatographic strip for rapid detection of Riemerella anatipestifer in ducks. Poult. Sci. 2020, 99, 4741–4749. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Wang, J.; Hua, Q.; Wu, J.; Shen, X.; Sun, Y.; Lei, H. Three lateral flow immunochromatographic assays based on different nanoparticle probes for on-site detection of tylosin and tilmicosin in milk and pork. Sens. Actuators B Chem. 2019, 301, 127059. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Y.; Zou, R.; Si, F.; Zhang, M.; Zhao, Y.; Zhu, G.; Guo, Y. Novel immunochromatographic strip assay based on up-conversion nanoparticles for sensitive detection of imidacloprid in agricultural and environmental samples. Environ. Sci. Pollut. Res. 2021, 28, 49268–49277. [Google Scholar] [CrossRef] [PubMed]
- Bin, Y.; Li, Z.; Wu, J.; Wang, X.; Li, T.; Yang, F. Development of an immunochromatographic strip test for rapid detection of citrus yellow vein clearing virus. Arch. Virol. 2018, 163, 349–357. [Google Scholar] [CrossRef]
- Salomone, A.; Mongelli, M.; Roggero, P.; Boscia, D. Reliability of detection of Citrus tristeza virus by an immunochromatographic lateral flow assay in comparison with ELISA. J. Plant Pathol. 2004, 86, 43–48. [Google Scholar]
- Drygin, Y.; Blintsov, A.; Osipov, A.; Grigorenko, V.; Andreeva, I. High-Sensitivity Express Immunochromatographic Method for Detection of Plant Infection by Tobacco Mosaic Virus. Biochemistry 2009, 74, 986–993. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, W.; Tian, J.; Zhao, W.; Chen, Z. Development of a lateral-flow assay (LFA) for rapid detection of Soybean mosaic virus. J. Virol. Methods 2016, 235, 51–57. [Google Scholar] [CrossRef]
- Contreras-Trigo, B.; Diaz-Garcia, V.; Guzman-Gutierrez, E.; Sanhueza, I.; Coelho, P.; Godoy, S. Slight pH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. Sensors 2018, 18, 2246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, J. The relationship between Pepper mottle virus source leaf and spread of infection through the stem of Capsicum sp. Arch. Virol. 2002, 147, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Stefanov, D.; Stoimenova, E.; Marinova, G.; Ivanova, B.; Edreva, A. Accelerated leaf senescence takes part in enhanced resistance in cucumber mosaic virus inoculated pepper leaves. Acta Physiol. Plant. 2012, 34, 181–190. [Google Scholar] [CrossRef]
- Su, H.; van Eerde, A.; Steen, H.; Heldal, I.; Haugslien, S.; Orpetveit, I.; Wustner, S.; Inami, M.; Rimstad, E.; Clarke, J. Establishment of a piscine myocarditis virus (PMCV) challenge model and testing of a plant-produced subunit vaccine candidate against cardiomyopathy syndrome (CMS) in Atlantic salmon Salmo salar. Aquaculture 2021, 541, 736806. [Google Scholar] [CrossRef]
- Park, Y.; Min, K.; Kim, N.; Kim, J.; Park, M.; Kang, H. Porcine circovirus 2 capsid protein produced in N. benthamiana forms virus-like particles that elicit production of virus-neutralizing antibodies in guinea pigs. New Biotechnol. 2021, 63, 29–36. [Google Scholar] [CrossRef]
- Volkova, N.; Pyankov, O.; Ivanova, A.; Isaeva, A.; Zybkina, A.; Kazachinskaya, E.; Shcherbakov, D. Prototype of a DNA Vaccine against Marburg Virus. Bull. Exp. Biol. Med. 2021, 70, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Byzova, N.; Vinogradova, S.; Porotikova, E.; Terekhova, U.; Zherdev, A.; Dzantiev, B. Lateral Flow Immunoassay for Rapid Detection of Grapevine Leafroll-Associated Virus. Biosensors 2018, 8, 111. [Google Scholar] [CrossRef]
Optimization Factor | Buffer Solution | Healthy Leaves | Diseased Leaves | |
---|---|---|---|---|
PBS | 0.01 M | - | - | ++ |
0.03 M | - | - | +++ | |
0.05 M | - | - | ++ | |
0.10 M | - | + | +++ | |
0.15 M | - | + | +++ | |
pH | 3.0 | + | + | +++ |
4.0 | + | + | +++ | |
5.0 | + | - | +++ | |
6.0 | - | - | +++ | |
7.0 | - | - | ++ | |
8.0 | - | - | ++ | |
9.0 | - | - | ++ | |
Tween-20 (%) | 0.03 | - | - | - |
0.05 | - | - | +++ | |
0.10 | - | - | ++++ | |
0.15 | + | + | ++++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Tian, Y.; Xu, C.; Xing, Y.; Yang, L.; Qian, G.; Hua, X.; Gong, W.; Hu, B.; Wang, L. A Monoclonal Antibody-Based Immunochromatographic Test Strip and Its Application in the Rapid Detection of Cucumber Green Mottle Mosaic Virus. Biosensors 2023, 13, 199. https://doi.org/10.3390/bios13020199
Zhao Z, Tian Y, Xu C, Xing Y, Yang L, Qian G, Hua X, Gong W, Hu B, Wang L. A Monoclonal Antibody-Based Immunochromatographic Test Strip and Its Application in the Rapid Detection of Cucumber Green Mottle Mosaic Virus. Biosensors. 2023; 13(2):199. https://doi.org/10.3390/bios13020199
Chicago/Turabian StyleZhao, Zichen, Yanli Tian, Chang Xu, Yuanfei Xing, Lili Yang, Guoliang Qian, Xiude Hua, Weirong Gong, Baishi Hu, and Limin Wang. 2023. "A Monoclonal Antibody-Based Immunochromatographic Test Strip and Its Application in the Rapid Detection of Cucumber Green Mottle Mosaic Virus" Biosensors 13, no. 2: 199. https://doi.org/10.3390/bios13020199
APA StyleZhao, Z., Tian, Y., Xu, C., Xing, Y., Yang, L., Qian, G., Hua, X., Gong, W., Hu, B., & Wang, L. (2023). A Monoclonal Antibody-Based Immunochromatographic Test Strip and Its Application in the Rapid Detection of Cucumber Green Mottle Mosaic Virus. Biosensors, 13(2), 199. https://doi.org/10.3390/bios13020199