High-Precision Detection of Cellular Drug Response Based on SERS Spectrum and Multivariate Statistical Analysis
Abstract
:1. Introduction
2. Experimental Preparation
2.1. Cell Culture
2.2. Assessment of Cell Viability
2.3. Preparation of Secreted Proteins
2.4. Preparation of Silver Colloids
2.5. SERS Measurements
2.6. Mass Spectrometry
2.7. Statistics Method
3. Results
3.1. Results of Silver Colloids
3.2. Results of Cell Viability of CCK8
3.3. Results of Mass Spectrometry
3.4. SERS Spectral Analysis of Cell-Secreted Proteins
3.4.1. SERS Spectra of CNE1 Cell-Secreted Proteins
3.4.2. SERS Spectra of the NP69 Cell-Secreted Proteins
3.4.3. Tentative Peak Attribution of the SERS Spectra
3.5. Multivariate Statistical Analysis (PCA–LDA)
3.5.1. CNE1
3.5.2. NP69
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, Y.; He, W.; Ren, C.; Qiao, J.; Guo, Q.; Hu, J.; Xu, H.; Jiang, X.; Wang, L. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct. Target. Ther. 2020, 5, 245, Erratum in Signal Transduct. Target. Ther. 2020, 5, 265. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: LOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Sun, Y.; Li, W.F.; Chen, N.Y.; Zhang, N.; Hu, G.Q.; Xie, F.Y.; Sun, Y.; Chen, X.Z.; Li, J.G.; Zhu, X.D.; et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A phase 3, multicentre, randomised controlled trial. Lancet Oncol. 2016, 17, 1509–1520. [Google Scholar] [CrossRef]
- Li, W.F.; Chen, N.Y.; Zhang, N.; Hu, G.Q.; Xie, F.Y.; Sun, Y.; Chen, X.Z.; Li, J.G.; Zhu, X.D.; Hu, C.S.; et al. Concurrent chemoradiotherapy with/without induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma: Long-term results of phase 3 randomized controlled trial. Int. J. Cancer 2019, 145, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Tang, L.L.; Yang, Q.; Poh, S.S.; Hui, E.P.; Chan, A.T.C.; Ong, W.S.; Tan, T.; Wee, J.; Li, W.F.; et al. Induction chemotherapy plus concurrent chemoradiotherapy in endemic nasopharyngeal carcinoma: Individual patient data pooled analysis of four randomized trials. Clin. Cancer Res. 2018, 24, 1824–1833. [Google Scholar] [CrossRef]
- Ng, W.T.; Tung, S.Y.; Lee, V.; Ngan, R.K.C.; Choi, H.C.W.; Chan, L.L.K.; Leung, T.W.; Siu, L.L.; Lu, T.X.; Tan, T.; et al. Concurrent-adjuvant chemoradiation therapy for stage III-IVB nasopharyngeal carcinoma-exploration for achieving optimal 10-year therapeutic ratio. Int. J. Radiat Oncol. Biol. Phys. 2018, 101, 1078–1086. [Google Scholar] [CrossRef]
- Chen, Y.P.; Liu, X.; Zhou, Q.; Yang, K.Y.; Jin, F.; Zhu, X.D.; Shi, M.; Hu, G.Q.; Hu, W.H.; Sun, Y.; et al. Metronomic capecitabine as adjuvant therapy in locoregionally advanced nasopharyngeal carcinoma: A multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial. Lancet 2021, 398, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Kocaturk, M.; Inan, O.E.; Tvarijonaviciute, A.; Sahin, B.; Baykal, A.T.; Cansev, M.; Ceron, J.J.; Yilmaz, Z.; Ulus, I.H. Nasal secretory protein changes following intravenous choline administration in calves with experimentally induced endotoxaemia. Vet. Immunol. Immunopathol. 2021, 233, 110197. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.; Papakonstantinou, E.; Karakioulaki, M.; Sun, Q.; Schumann, D.; Tamm, M.; Stolz, D.; Roth, M. Secreted heat shock proteins control airway remodeling: Evidence from bronchial thermoplasty. J. Allergy Clin. Immunol. 2021, 148, 1249–1261.e8. [Google Scholar] [CrossRef]
- Zheng, M.; Gao, S.; Lin, Y.; Lin, Y.; Huang, Z.; Xie, S.; Yu, Y.; Lin, J. Surface-enhanced Raman scattering of secretory proteins for the cytotoxicity analysis of low-dose doxorubicin. J. Raman Spectrosc. 2020, 51, 2217–2226. [Google Scholar] [CrossRef]
- Zhi, S.M.; Fang, G.X.; Xie, X.M.; Liu, L.H.; Yan, J.; Liu, D.B.; Yu, H.Y. Melatonin reduces OGD/R-induced neuron injury by regulating redox/inflammation/apoptosis signaling. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Guo, J.; Zhang, Y.; Zhang, Y.; Zhang, M.; Zong, R.; Chen, F.; Zhang, J. Neuromedin B regulates steroidogenesis, cell viability and apoptosis in rabbit Leydig cells. Gen. Comp. Endocrinol. 2020, 288, 113371. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Yu, Y.; Lin, D.; Huang, H.; Shi, H. Houttuynia cordata Thunb extract induces cytotoxicity in human nasopharyngeal carcinoma cells: Raman spectroscopic studies. Laser. Phys. Lett. 2016, 13, 015601. [Google Scholar] [CrossRef]
- El Hallal, R.; Lyu, N.; Wang, Y. Effect of cetuximab-conjugated gold nanoparticles on the cytotoxicity and phenotypic evolution of colorectal cancer cells. Molecules 2021, 26, 567. [Google Scholar] [CrossRef]
- Qiu, S.; Li, M.; Liu, J.; Chen, X.; Lin, T.; Xu, Y.; Chen, Y.; Weng, Y.; Pan, Y.; Feng, S.; et al. Study on the chemodrug-induced effect in nasopharyngeal carcinoma cells using laser tweezer Raman spectroscopy. Biomed. Opt. Express 2020, 11, 1819–1833. [Google Scholar] [CrossRef]
- Wang, J.; Lin, K.; Hu, H.; Qie, X.; Huang, W.E.; Cui, Z.; Gong, Y.; Song, Y. In vitro anticancer drug sensitivity sensing through single-cell Raman spectroscopy. Biosensors 2021, 11, 286. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Lin, Y.; Xu, C.; Lin, K.; Ye, Q.; Wang, X.; Xie, S.; Chen, R.; Lin, J. Label-free detection of nasopharyngeal and liver cancer using surface-enhanced Raman spectroscopy and partial lease squares combined with support vector machine. Biomed. Opt. Express 2018, 9, 6053–6066. [Google Scholar] [CrossRef]
- Lin, X.; Lin, D.; Ge, X.; Qiu, S.; Feng, S.; Chen, R. Noninvasive detection of nasopharyngeal carcinoma based on saliva proteins using surface-enhanced Raman spectroscopy. J. Biomed. Opt. 2017, 22, 105004. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, S.; Ren, C.; Ma, Z. Astragalus polysaccharide alleviates LPS-induced inflammation injury by regulating miR-127 in H9c2 cardiomyoblasts. Int. J. Immunopathol. Pharmacol. 2018, 32, 2058738418759180. [Google Scholar] [CrossRef] [PubMed]
- Taskila, S.; Ahokas, M.; Järvinen, J.; Toivanen, J.; Tanskanen, J.P. Concentration and separation of active proteins from potato industry waste based on low-temperature evaporation and ethanol precipitation. Scientifica 2017, 2017, 5120947. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Li, C.; Lin, J.; Xu, Y.; Lu, J.; Huang, Q.; Zou, C.; Chen, C.; Xiao, N.; Lin, D.; et al. Early discrimination of nasopharyngeal carcinoma based on tissue deoxyribose nucleic acid surface-enhanced Raman spectroscopy analysis. J. Biomed. Opt. 2016, 21, 125003. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Chen, R.; Lin, J.; Pan, J.; Chen, G.; Li, Y.; Cheng, M.; Huang, Z.; Chen, J.; Zeng, H. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens. Bioelectron. 2010, 25, 2414–2419. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Ishitobi, S.; Hamada, K.; Smith, N.I.; Taguchi, A.; Inouye, Y.; Kawata, S. Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell. J. Biomed. Opt. 2009, 14, 024038. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Wu, H.; Volponi, J.V.; Oliver, A.E.; Parikh, A.N.; Simmons, B.A.; Singh, S. In vivo lipidomics using single-cell Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2011, 108, 3809–3814. [Google Scholar] [CrossRef]
- Wang, X.D.; Hu, R.; Ding, Q.; Savage, T.K.; Huffman, K.E.; Williams, N.; Cobb, M.H.; Minna, J.D.; Johnson, J.E.; Yu, Y. Subtype-specific secretomic characterization of pulmonary neuroendocrine tumor cells. Nat. Commun. 2019, 10, 3201. [Google Scholar] [CrossRef] [PubMed]
- Joke, D.G.; Kris, D.G.; Peter, V.; Luc, M. Reference database of Raman spectra of biological Molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Yu, D.W.; Yuan, S. Structural Conformation and environment of the side-chain in cellobiohydrolase II molecule from trichoderma viride. J. Instrum. Anal. 2004, 23, 63–66. (In Chinese) [Google Scholar] [CrossRef]
- Ma, J.; Zhou, H.J.; Gong, L.J.; Liu, S.; Zhou, Z.H.; Mao, W.H.; Zheng, R.E. Distinction of gastric cancer tissue based on surface-enhanced Raman spectroscopy. Proc. SPIE 2015, 8553, 855328. [Google Scholar] [CrossRef]
- Christopher, J.F.; Richard, L.M. Raman spectroscopy of normal and diseased human breast tissues. Anal. Chem. 1995, 67, 777–783. [Google Scholar] [CrossRef]
- Huang, Z.; McWilliams, A.; Lui, M.; McLean, D.I.; Lam, S.; Zeng, H. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int. J. Cancer 2003, 107, 1047–1052. [Google Scholar] [CrossRef]
- Ammon, J.C.; Valls, D.; Eldemerdash, M.; Patel, J.R.; Tran, P.D.; Feng, L.; Gi, M.; Gonzalez, T.T.; Phan, C.; Zendejas, A.E.; et al. G protein-coupled receptor kinase 2 modifies the cellular reaction to cisplatin through interactions with NADPH oxidase 4. Mol. Cell Biochem. 2021, 476, 1505–1516. [Google Scholar] [CrossRef]
- Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Schwörer, S.; Berisa, M.; Kyung, Y.J.; Ryu, K.W.; Yi, J.; Jiang, X.; Cross, J.R.; Thompson, C.B. Mitochondrial NADP(H) generation is essential for proline biosynthesis. Science 2021, 372, 968–972. [Google Scholar] [CrossRef]
- Cadoni, E.; Valletta, E.; Caddeo, G.; Isaia, F.; Cabiddu, M.G.; Vascellari, S.; Pivetta, T. Competitive reactions among glutathione, cisplatin and copper-phenanthroline complexes. J. Inorg. Biochem. 2017, 173, 126–133. [Google Scholar] [CrossRef]
- HERRERO, A.M. Raman Spectroscopy for Monitoring Protein Structure in Muscle Food Systems. Crit. Rev. Food Sci. Nutr. 2008, 48, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Das, B.B.; Sha Glassman, W.L.; Tang, G.C.; Yoo, K.M.; Zhu, H.R.; Akins, D.L.; Lubicz, S.S.; Cleary, J.; Prudente, R.; et al. Raman, fluorescence, and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media. I. Photochem. Photobiol. B Biol. 1992, 16, 187–209. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.F.; Yang, Y.L.; Liu, Z.J.; Guo, L.; Li, S.P.; Sun, X.J.; Shao, Z.M.; Ji, M.B. Microcalcification-based tumor malignancy evaluation in fresh breast biopsies with hyperspectral stimulated raman scattering. Anal. Chem. 2021, 93, 6223–6231. [Google Scholar] [CrossRef]
- Ma, D.Y.; Zhao, Y.; Shang, L.W.; Zhu, Y.K.; Fu, J.J.; Lu, Y.F.; Yin, J.H. Research progress of raman spectroscopy application for articular cartilage and osteoarthritis. Spectrosc. Spectr. Anal. 2020, 40, 2029–2034. [Google Scholar]
- Du, Y.; Liu, H.; Tian, Y.; Gu, C.; Zhao, Z.; Zeng, S.; Jiang, T. Recyclable SERS-based immunoassay guided by photocatalytic performance of Fe3O4@TiO2@Au nanocomposites. Biosensors 2020, 10, 25. [Google Scholar] [CrossRef] [Green Version]
Sample | No. | Accession | Gene | Mw(kD) | iBAQ [%] |
---|---|---|---|---|---|
CNE1 control | 1 | P06733 | ENO1 | 47.169 | 2.813166208 |
2 | P23528 | CFL1 | 18.502 | 1.69781084 | |
3 | P07195 | LDHB | 36.638 | 1.504842291 | |
4 | P04406 | GAPDH | 36.053 | 1.420498423 | |
5 | P14618 | PKM | 57.937 | 1.234203547 | |
6 | F8W6I7 | HNRNPA1 | 33.155 | 1.140956715 | |
7 | P07737 | PFN1 | 15.054 | 1.105501051 | |
8 | P18669 | PGAM1 | 28.804 | 1.101198662 | |
CNE1 3 µg/mL | 1 | P62805 | H4C1 | 11.367 | 2.221588586 |
2 | P07737 | PFN1 | 15.054 | 1.892088776 | |
3 | P06733 | ENO1 | 47.169 | 1.60544963 | |
4 | P23528 | CFL1 | 18.502 | 1.411833 | |
5 | P07900 | HSP90AA1 | 84.66 | 1.387090092 | |
6 | P00338 | LDHA | 36.689 | 1.22050137 | |
7 | P68104 | EEF1A1 | 50.141 | 1.078141768 | |
8 | P63261 | ACTG1 | 41.793 | 1.063363627 | |
CNE1 4 µg/mL | 1 | P62805 | H4C1 | 11.367 | 2.105799202 |
2 | P07737 | PFN1 | 15.054 | 1.664594022 | |
3 | P06733 | ENO1 | 47.169 | 1.607366138 | |
4 | P23528 | CFL1 | 18.502 | 1.42540016 | |
5 | P07900 | HSP90AA1 | 84.66 | 1.404212341 | |
6 | P00338 | LDHA | 36.689 | 1.227854903 | |
7 | P62937 | PPIA | 18.012 | 1.033113917 | |
8 | P07195 | LDHB | 36.638 | 1.026684867 | |
CNE1 5 µg/mL | 1 | P62805 | H4C1 | 11.367 | 2.09864077 |
2 | P06733 | ENO1 | 47.169 | 1.731257867 | |
3 | P07737 | PFN1 | 15.054 | 1.622628465 | |
4 | P23528 | CFL1 | 18.502 | 1.555246031 | |
5 | P07900 | HSP90AA1 | 84.66 | 1.390382025 | |
6 | P00338 | LDHA | 36.689 | 1.261067207 | |
7 | P07195 | LDHB | 36.638 | 1.077796895 | |
8 | P62937 | PPIA | 18.012 | 1.070724217 | |
NP69 control | 1 | P06733 | ENO1 | 47.169 | 1.355017617 |
2 | P10599 | TXN | 11.738 | 1.293302386 | |
3 | P23528 | CFL1 | 18.502 | 1.234233114 | |
4 | P62805 | H4C1 | 11.367 | 1.223220199 | |
5 | P63261 | ACTG1 | 41.793 | 1.217642229 | |
6 | F8W6I7 | HNRNPA1 | 33.155 | 1.199192021 | |
7 | P04406 | GAPDH | 36.053 | 1.182100549 | |
8 | P04083 | ANXA1 | 38.714 | 1.070469638 | |
NP69 3 µg/mL | 1 | P06733 | ENO1 | 47.169 | 1.9117112 |
2 | P63261 | ACTG1 | 41.793 | 1.666133678 | |
3 | P68104 | EEF1A1 | 50.141 | 1.536606509 | |
4 | P07355 | ANXA2 | 38.604 | 1.417935664 | |
5 | P62805 | H4C1 | 11.367 | 1.350426802 | |
6 | P04083 | ANXA1 | 38.714 | 1.290779416 | |
7 | P14618 | PKM | 57.937 | 1.268941984 | |
8 | P04406 | GAPDH | 36.053 | 1.228424188 | |
NP69 4 µg/mL | 1 | P06733 | ENO1 | 47.169 | 3.059654209 |
2 | P04406 | GAPDH | 36.053 | 1.937876617 | |
3 | P63261 | ACTG1 | 41.793 | 1.690142515 | |
4 | P07737 | PFN1 | 15.054 | 1.504906682 | |
5 | P0DMV9 | HSPA1B | 70.052 | 1.365441956 | |
6 | P63241 | EIF5A | 16.832 | 1.317286377 | |
7 | P60174 | TPI1 | 30.791 | 1.317071236 | |
8 | F8W6I7 | HNRNPA1 | 33.155 | 1.308519408 | |
NP69 5 µg/mL | 1 | P06733 | ENO1 | 47.169 | 12.91194799 |
2 | P63261 | ACTG1 | 41.793 | 2.849968877 | |
3 | P07355 | ANXA2 | 38.604 | 1.64815391 | |
4 | P68104 | EEF1A1 | 50.141 | 1.575224042 | |
5 | P07737 | PFN1 | 15.054 | 1.411233695 | |
6 | P00338 | LDHA | 36.689 | 1.370609586 | |
7 | P0DMV9 | HSPA1B | 70.052 | 1.275186217 | |
8 | P23528 | CFL1 | 18.502 | 1.20724736 |
Peak Position (cm−1) | Tentative Assignments |
---|---|
562,563 | Proline |
636 | L-Tyrosine, lactose |
653 | C–S bond |
679 | Glutathione |
730–735 | Phosphatidylserine |
888 | Protein bands; structural protein modes of tumors |
955–958 | Protein |
980 | Protein |
1001–1004 | Phenylalanine, C–C skeletal |
1072 | Collagen |
1090 | Symmetric phosphate stretching vibrations |
1267 | Amide III (collagen assignment) |
1319–1321 | Collagen assignment; Amide III |
1335 | Collagen (protein assignment) |
1448–1449 | Collagen (protein assignment) |
1668 | Structural protein modes of tumors |
Peak Position (cm−1) | Control vs. 3 μg/mL | Control vs. 4 μg/mL | Control vs. 5 μg/mL | 3 μg/mL vs. 4 μg/mL | 3 μg/mL vs. 5 μg/mL | 4 μg/mL vs. 5 μg/mL |
---|---|---|---|---|---|---|
653 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.037 |
1319 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.055 |
Diagnostic Combinations | Predicted Results | |||
---|---|---|---|---|
Sensitivity (%) | Specificity (%) | Accuracy (%) | AUC | |
Control vs. 3 μg/mL | 100 | 100 | 100 | 1.000 |
Control vs. 4 μg/mL | 100 | 100 | 100 | 1.000 |
Control vs. 5 μg/mL | 100 | 100 | 100 | 1.000 |
3 μg/mL vs. 4 μg/mL | 91.7 | 93.3 | 92.5 | 0.972 |
3 μg/mL vs. 5 μg/mL | 96.7 | 91.7 | 94.2 | 0.991 |
4 μg/mL vs. 5 μg/mL | 78.3 | 81.7 | 80.0 | 0.838 |
Peak Position (cm−1) | Control vs. 3 μg/mL | Control vs. 4 μg/mL | Control vs. 5 μg/mL | 3 μg/mL vs. 4 μg/mL | 3 μg/mL vs. 5 μg/mL | 4 μg/mL vs. 5 μg/mL |
---|---|---|---|---|---|---|
679 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.711 |
Diagnostic Combinations | Predicted Results | |||
---|---|---|---|---|
Sensitivity (%) | Specificity (%) | Accuracy (%) | AUC | |
Control vs. 3 μg/mL | 79.3 | 71.0 | 75.2 | 0.895 |
Control vs. 4 μg/mL | 76.7 | 90.0 | 83.4 | 0.949 |
Control vs. 5 μg/mL | 80.0 | 80.0 | 80.0 | 0.932 |
3 μg/mL vs. 4 μg/mL | 80.0 | 93.3 | 86.7 | 0.968 |
3 μg/mL vs. 5 μg/mL | 86.7 | 83.3 | 85.0 | 0.953 |
4 μg/mL vs. 5 μg/mL | 93.3 | 76.7 | 85.0 | 0.924 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Wu, Z.; Wang, X.; Liu, Y.; Ye, Q. High-Precision Detection of Cellular Drug Response Based on SERS Spectrum and Multivariate Statistical Analysis. Biosensors 2023, 13, 241. https://doi.org/10.3390/bios13020241
Wu F, Wu Z, Wang X, Liu Y, Ye Q. High-Precision Detection of Cellular Drug Response Based on SERS Spectrum and Multivariate Statistical Analysis. Biosensors. 2023; 13(2):241. https://doi.org/10.3390/bios13020241
Chicago/Turabian StyleWu, Fengfang, Zhiwei Wu, Xiaoyan Wang, Yunliang Liu, and Qing Ye. 2023. "High-Precision Detection of Cellular Drug Response Based on SERS Spectrum and Multivariate Statistical Analysis" Biosensors 13, no. 2: 241. https://doi.org/10.3390/bios13020241
APA StyleWu, F., Wu, Z., Wang, X., Liu, Y., & Ye, Q. (2023). High-Precision Detection of Cellular Drug Response Based on SERS Spectrum and Multivariate Statistical Analysis. Biosensors, 13(2), 241. https://doi.org/10.3390/bios13020241