Flexible Amperometric Immunosensor Based on Colloidal Quantum Dots for Detecting the Myeloperoxidase (MPO) Systemic Inflammation Biomarker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instruments
2.3. Fabrication of PbS CQDs-Modified Electrode
2.4. Electrochemical Measurements
3. Results
3.1. The Characterization of PbS CQDs-Modified Electrode
3.2. Electrochemical Characterization of PbS CQD-Modified Electrode
3.3. Research on the Performance of Immunosensor for Detecting MPO Antigen
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siraki, A.G. The many roles of myeloperoxidase: From inflammation and immunity to biomarkers, drug metabolism and drug discovery. Redox Biol. 2021, 46, 102109. [Google Scholar] [CrossRef]
- Ndrepepa, G. Myeloperoxidase—A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin. Chim. Acta 2019, 493, 36–51. [Google Scholar] [CrossRef]
- Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. [Google Scholar] [CrossRef]
- Wakui, M.; Kuriyama, K. Diagnosis of acute myeloid leukemia according to the WHO classification in the Japan Adult Leukemia Study Group AML-97 protocol. Int. J. Hematol. 2008, 87, 144–151. [Google Scholar] [CrossRef]
- Meuwese, M.C.; Stroes, E.S.G. Serum Myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals—The EPIC-Norfolk prospective population study. J. Am. Coll. Cardiol. 2007, 50, 159–165. [Google Scholar] [CrossRef]
- Nandeshwar, R.; Tallur, S. Integrated Low Cost Optical Biosensor for High Resolution Sensing of Myeloperoxidase (MPO) Activity Through Carbon Nanotube Degradation. IEEE Sens. J. 2021, 21, 1236–1243. [Google Scholar] [CrossRef]
- Stamp, L.K.; Khalilova, I. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology 2012, 51, 1796–1803. [Google Scholar] [CrossRef]
- Zhu, H.L.; Fohlerova, Z. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron. 2020, 153, 112041. [Google Scholar] [CrossRef]
- Arimura, Y.; Marumo, T. Anti-neutrophil cytoplasmic antibody–enzyme immunosorbent assay. Rinsho byori Jpn. J. Clin. Pathol. 2001, 49, 571–574. [Google Scholar]
- Boomsma, M.M.; Stegeman, C.A. Native and recombinant proteins to analyze auto-antibodies to myeloperoxidase in pauci-immune crescentic glomerulonephritis. J. Immunol. Methods 2001, 254, 47–58. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Ohashi, Y. An ELISA system for determination of epitopes of MPO-ANCA using MPO deletion mutants. Clin. Exp. Immunol. 1998, 112, 48. [Google Scholar]
- Mansfield, E.S.; Worley, J.M. Nucleic acid detection using non-radioactive labelling methods. Mol. Cell. Probes 1995, 9, 145–156. [Google Scholar] [CrossRef]
- Barallat, J.; Olive-Monllau, R. Chronoamperometric Magneto Immunosensor for Myeloperoxidase Detection in Human Plasma Based on a Magnetic Switch Produced by 3D Laser Sintering. Anal. Chem. 2013, 85, 9049–9056. [Google Scholar] [CrossRef]
- Herrasti, Z.; Martinez, F.; Baldrich, E. Carbon nanotube wiring for signal amplification of electrochemical magneto immunosensors: Application to myeloperoxidase detection. Anal. Bioanal. Chem. 2014, 406, 5487–5493. [Google Scholar] [CrossRef]
- Sun, F.F.; Zhang, J. Quantum dot biosensor combined with antibody and aptamer for tracing food-borne pathogens. Food Qual. Saf. 2021, 5, fyab019. [Google Scholar] [CrossRef]
- Zheng, X.T.; Ananthanarayanan, A. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small 2015, 11, 1620–1636. [Google Scholar] [CrossRef]
- Kagan, C.R.; Lifshitz, E. Building devices from colloidal quantum dots. Science 2016, 353, aac5523. [Google Scholar] [CrossRef]
- Howes, P.D.; Chandrawati, R.; Stevens, M.M. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 53. [Google Scholar] [CrossRef]
- Liu, H.; Li, M. Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids. Adv. Mater. 2014, 26, 2718–2724. [Google Scholar] [CrossRef]
- De Arquer, F.P.G.; Talapin, D.V. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, 640. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, B.H. Progress on the surface ligand engineering of lead sulfide colloidal quantum dots. Chin. Sci. Bull.-Chin. 2021, 66, 4664–4676. [Google Scholar] [CrossRef]
- Silva, A.C.A.; Freschi, A.P.P. Biological analysis and imaging applications of CdSe/CdSxSe1-x/CdS core-shell magic-sized quantum dot. Nanomed.-Nanotechnol. Biol. Med. 2016, 12, 1421–1430. [Google Scholar] [CrossRef]
- Yong, K.T.; Roy, I. Synthesis of ternary CuInS2/ZnS quantum dot bioconjugates and their applications for targeted cancer bioimaging. Integr. Biol. 2010, 2, 121–129. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Chen, J.J. All-solid-state SARS-CoV-2 protein biosensor employing colloidal quantum dots-modified electrode. Biosens. Bioelectron. 2022, 202, 113974. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Tao, Y.B. Colloidal quantum dots-based electrochemical sensor for bladder cancer marker detection. J. Funct. Mater. Devices 2021, 27, 416–424. [Google Scholar]
- Tao, Y.B.; Huang, J. Electrochemical sensor for the detection of eosinophil cationic protein as a marker of allergic rhinitis based on colloidal quantum dots. Chin. J. Anal. Chem. 2022, 50, 53–59. [Google Scholar] [CrossRef]
- Boles, M.A.; Ling, D. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153. [Google Scholar] [CrossRef]
- Kour, R.; Arya, S. Review-Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. J. Electrochem. Soc. 2020, 167, 037555. [Google Scholar] [CrossRef]
- Krishnan, S.K.; Singh, E. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019, 9, 8778–8881. [Google Scholar] [CrossRef]
- Wu, P.; Hou, X.D. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale 2016, 8, 8427–8442. [Google Scholar] [CrossRef]
- Medintz, I.L.; Uyeda, H.T. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446. [Google Scholar] [CrossRef]
- Whitham, K.; Yang, J. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 2016, 15, 557. [Google Scholar] [CrossRef]
- Ning, Z.J.; Voznyy, O. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822–828. [Google Scholar] [CrossRef]
- Dudley, R.A.; Edwards, P. Guidelines for immunoassay data processing. Clin. Chem. 1985, 31, 1264–1271. [Google Scholar] [CrossRef]
- Liu, B.; Lu, L.S. Disposable electrochemical immunosensor for myeloperoxidase based on the indium tin oxide electrode modified with an ionic liquid composite film containing gold nanoparticles, poly(o-phenylenediamine) and carbon nanotubes. Microchim. Acta 2011, 173, 513–520. [Google Scholar] [CrossRef]
- Venkatraman, V.L.; Reddy, R.K. Iridium oxide nanomonitors: Clinical diagnostic devices for health monitoring systems. Biosens. Bioelectron. 2009, 24, 3078–3083. [Google Scholar] [CrossRef]
- Liu, B.; Lu, L.S. Immunosensor for Myeloperoxidase Based on PoPD-MWCNTs-Ionic Liquid/Nanogold Modified Au Electrode. Acta Chim. Sin. 2011, 69, 438–444. [Google Scholar]
- Herrasti, Z.; Martinez, F.; Baldrich, E. CNT wiring for signal amplification in electrochemical magnetosensors. Brescia 2014, 87, 712–715. [Google Scholar] [CrossRef]
- Lu, L.S.; Liu, B. Improved electrochemical immunosensor for myeloperoxidase in human serum based on nanogold/cerium dioxide-BMIMPF6/L-Cysteine composite film. Colloids Surf. B-Biointerfaces 2011, 86, 339–344. [Google Scholar] [CrossRef]
- Huang, J.S.; Milton, A. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems. J. Leukoc. Biol. 2016, 99, 541–548. [Google Scholar] [CrossRef]
- Delle, L.E.; Pachauri, V. ScFv-modified graphene-coated IDE-arrays for ‘label-free’ screening of cardiovascular disease biomarkers in physiological saline. Biosens. Bioelectron. 2018, 102, 574–581. [Google Scholar] [CrossRef] [PubMed]
Modified Electrode | Measurement Mode | LOD (pg mL−1) | Linear Range (ng mL−1) | Reference |
---|---|---|---|---|
ITO-nano-Au/PoPD-MWCNTs-IL | CV | 50 | 23.4–300 | [35] |
IrOx-TiN | EIS | 500 | 1–1000 | [36] |
Au-PoPD-MWCNTs/Au | CV | 70 | 0.25–350 | [37] |
CE-MPs/CNT | CV | 543 | 0–120 | [38] |
Au-L-Cysteine/BMIMPF6/CeO2 | CV | 60 | 10–400 | [39] |
N-CNT | - | 700 | 100–210 | [40] |
Graphene-coated IDE-arrays | - | 350 | 0.112–3000 | [41] |
CE-PbS CQDs | DPV | 0.0316 | 0.001–1 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Zhao, Y.; Wang, L.; Huang, J.; Chen, Y.; Huang, Q.; Song, B.; Li, H.-Y.; Chen, J.; Liu, H. Flexible Amperometric Immunosensor Based on Colloidal Quantum Dots for Detecting the Myeloperoxidase (MPO) Systemic Inflammation Biomarker. Biosensors 2023, 13, 255. https://doi.org/10.3390/bios13020255
Tao Y, Zhao Y, Wang L, Huang J, Chen Y, Huang Q, Song B, Li H-Y, Chen J, Liu H. Flexible Amperometric Immunosensor Based on Colloidal Quantum Dots for Detecting the Myeloperoxidase (MPO) Systemic Inflammation Biomarker. Biosensors. 2023; 13(2):255. https://doi.org/10.3390/bios13020255
Chicago/Turabian StyleTao, Yanbing, Yunong Zhao, Le Wang, Jing Huang, Yan Chen, Qing Huang, Boxiang Song, Hua-Yao Li, Jianjun Chen, and Huan Liu. 2023. "Flexible Amperometric Immunosensor Based on Colloidal Quantum Dots for Detecting the Myeloperoxidase (MPO) Systemic Inflammation Biomarker" Biosensors 13, no. 2: 255. https://doi.org/10.3390/bios13020255
APA StyleTao, Y., Zhao, Y., Wang, L., Huang, J., Chen, Y., Huang, Q., Song, B., Li, H. -Y., Chen, J., & Liu, H. (2023). Flexible Amperometric Immunosensor Based on Colloidal Quantum Dots for Detecting the Myeloperoxidase (MPO) Systemic Inflammation Biomarker. Biosensors, 13(2), 255. https://doi.org/10.3390/bios13020255