Progress and Trends of Optical Microfiber-Based Biosensors
Abstract
:1. Introduction
2. Tapered Optical Fiber for Biosensing Applications
2.1. Fabrication of Tapered Optical Fiber
2.2. Classifications of Tapered Optical Fiber
2.3. Generation of Evanescent Waves on the Surface of a Tapered Optical Fiber
3. Microfiber Bragg Gratings for Biosensing Applications
Fabrication of MFBG
4. D-Shaped Fiber for Biosensing Applications
Fabrication of D-Shaped Fiber
5. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martín-Blanco, C.; Zamorano, M.; Lizárraga, C.; Molina-Moreno, V. The Impact of COVID-19 on the Sustainable Development Goals: Achievements and Expectations. Int. J. Environ. Res. Public Health 2022, 19, 16266. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 10 December 2022).
- Yang, H.; Li, Y.; Lei, M.; Li, X. All-fiber hydrofluoric acid sensor based on the dynamic corrosion process of the end face of a fiber tip. Opt. Fiber Technol. 2022, 73, 103065. [Google Scholar] [CrossRef]
- Satija, J.; Karunakaran, B.; Mukherji, S. A dendrimer matrix for performance enhancement of evanescent wave absorption-based fiber-optic biosensors. RSC Adv. 2014, 4, 5841–15848. [Google Scholar] [CrossRef]
- Divagar, M.; Gayathri, R.; Rasool, R.; Shamlee, J.K.; Bhatia, H.; Satija, J.; Sai, V.V.R. Plasmonic Fiberoptic Absorbance Biosensor (P-FAB) for Rapid Detection of SARS-CoV-2 Nucleocapsid Protein. IEEE Sens. J. 2021, 21, 22758–22766. [Google Scholar] [CrossRef]
- Poh, A.H.; Hassan, M.R.A.; Bakar, M.H.A.; Adikan, F.R.M.; Moghavvemi, M. Profile Morphology of Fiber Bragg Gratings During Initial Cracking: A Case Study on Proof Load Testing of an Arch Spandrel Segment. IEEE Sens. J. 2022, 22, 5678–5687. [Google Scholar] [CrossRef]
- Owji, E.; Mokhtari, H.; Ostovari, F.; Darazereshki, B.; Shakiba, N. 2D materials coated on etched optical fibers as humidity sensor. Sci. Rep. 2021, 11, 1771. [Google Scholar] [CrossRef]
- Alkhabet, M.M.; Yaseen, Z.M.; Eldirderi, M.M.A.; Khedher, K.M.; Jawad, A.H.; Girei, S.H.; Salih, H.K.; Paiman, S.; Arsad, N.; Mahdi, M.A. Palladium/Graphene Oxide Nanocomposite for Hydrogen Gas Sensing Applications Based on Tapered Optical Fiber. Materials 2022, 15, 8167. [Google Scholar] [CrossRef]
- Zakaria, R.B.; Mezher, M.H.; Zahid, A.; Rohizat, N.S.; Patel, S.K.; Amiri, I.S. Nonlinear studies of graphene oxide and its application to moisture detection in transformer oil using D-shaped optical fibre. J. Mod. Opt. 2020, 67, 619–627. [Google Scholar] [CrossRef]
- Mohsin, A.Z.; Sukor, R.; Mustapha-Kamil, Y.; Shatar, L.; Selamat, J.; Meor-Hussin, A.S.; Ismail, I.K.; Mahdi, M.A. Sensitive Detection of Goat αs1-Casein Using Tapered Optical Fiber Sensor. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Zainuddin, N.H.; Chee, H.Y.; Ahmad, M.Z.; Mahdi, M.A.; Abu Bakar, M.H.; Yaacob, M.H. Sensitive Leptospira DNA detection using tapered optical fiber sensor. J. Biophotonics 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Kawasaki, B.S.; Hill, K.O.; Lamont, R.G. Biconical-taper single-mode fiber coupler. Opt. Lett. 1981, 6, 327–328. [Google Scholar] [CrossRef]
- Kumar, A.; Subrahmanyam, T.V.B.; Sharma, A.D.; Thyagarajan, K.; Pal, B.P.; Goyal, I.C. Novel refractometer using a tapered optical fibre. Electron. Lett. 1984, 20, 34–535. [Google Scholar] [CrossRef]
- Sidhik, S.; Ittiarah, J.V.; Gangopadhyay, T.K. Design and Analysis of Chemically Etched and Biconically Tapered Fiber for Chemical Sensing Application. IEM Optronix 2015, 166, 173–179. [Google Scholar]
- Mononobe, S.; Maheswari, R.U.; Ohtsu, M. Fabrication of a pencil-shaped fiber probe with a nanometric protrusion from a metal film for near-field optical microscopy. Opt. Express 1997, 1, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Gangopadhyay, T.K.; Halder, A.; Das, S.; Paul, M.C.; Pal, M.; Salza, M.; Gagliardi, G. Fabrication of tapered single mode fiber by chemical etching and used as a chemical sensor based on evanescent field absorption. SPIE 2010, 8173, 817310–817321. [Google Scholar]
- Musa, B.; Mustapha Kamil, Y.; Abu Bakar, M.H.; Noor, A.S.M.; Ismail, A.; Mahdi, M.A. Effects of taper parameters on free spectral range of non-adiabatic tapered optical fibers for sensing applications. Microw. Opt. Technol. Lett. 2016, 58, 798–803. [Google Scholar] [CrossRef]
- Abdul Hamid, I.S.L.; Mustapha Kamil, Y.; Abd Manaf, A.; Mahdi, M.A. Fabrication and characterization of micro fluidic based fiber optic refractive index sensor. Sens. Bio-Sensing Res. 2017, 13, 70–74. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Abdullah, J.; Mustapha Kamil, Y.; Daniyal, W.M.E.M.M.; Sadrolhosseini, A.R.; Mahdi, M.A. Sensitive Detection of Dengue Virus Type 2 E-Proteins Signals Using Self-Assembled Monolayers/Reduced Graphene Oxide-PAMAM Dendrimer Thin Film-SPR Optical Sensor. Sci. Rep. 2020, 10, 2374. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.E.; Ravets, S.; Grover, J.A.; Solano, P.; Kordell, P.R.; Wong-Campos, J.D.; Orozco, L.A.; Rolston, A.L. Ultrahigh transmission optical nanofibers. AIP Adv. 2014, 4, 67124. [Google Scholar] [CrossRef]
- Nagai, R.; Aoki, T. Ultra-low-loss tapered optical fibers with minimal lengths. Opt. Express 2014, 22, 28427–28436. [Google Scholar] [CrossRef]
- Chormaic, S.N.; Morrissey, M.; Deasy, K.; Nagabhushan, T.B.; Ward, J.; Shortt, B. Evanescent Field Atom Optics Using Micro-Tapered Fibers. paper LTuK3. In Proceedings of the Frontiers in Optics + Laser Science 2006, Rochester, New York, USA, 10 October 2006. [Google Scholar]
- Musa, B.; Kamil, Y.M.; Abu Bakar, M.H.; Mohd Noor, A.S.; Ismail, A.; Mahdi, M.A. Investigating the effect of taper length on sensitivity of the tapered-fiber based temperature sensor. J. Teknol. 2016, 78, 135–140. [Google Scholar] [CrossRef]
- Aizawa, T.W.K. Penetration-Depth Characteristics of Evanescent Fields at Metal Attenuated Total Reflection. Jpn. J. Appl. Phys. 2005, 44, 4272. [Google Scholar]
- Kamil, Y.M.; Bakar, M.A.; Mustapa, M.A.; Yaacob, M.H.; Abidin, N.H.Z.; Syahir, A.; Lee, H.J.; Mahdi, M.A. Label-free Dengue E protein detection using a functionalized tapered optical fiber sensor. Sens. Actuators B Chem. 2018, 257, 820–828. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Ramli, I.; Sadrolhosseini, A.R.; Abdullah, J.; Yusof, N.A.; Kamil, Y.M.; Mahdi, M.A. An Optical Sensor for Dengue Envelope Proteins Using Polyamidoamine Dendrimer Biopolymer-Based Nanocomposite Thin Film: Enhanced Sensitivity, Selectivity, and Recovery Studies. Polymers 2021, 13, 762. [Google Scholar] [CrossRef]
- Botewad, S.N.; Pahurkar, V.G.; Muley, G.G.; Gaikwad, D.K.; Bodkhe, G.A.; Shirsat, M.D.; Pawar, P.P. PANI-ZnO Cladding-Modified Optical Fiber Biosensor for Urea Sensing Based on Evanescent Wave Absorption. Front. Mater. 2020, 7, 184. [Google Scholar] [CrossRef]
- Kamil, Y.M.; Bakar, M.H.A.; Yaacob, M.H.; Syahir, A.; Lim, H.N.; Mahdi, M.A. Dengue E Protein Detection Using a Graphene Oxide Integrated Tapered Optical Fiber Sensor. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar]
- Alwahib, A.A.A.; Kamil, Y.M.; Bakar, M.H.A.; Noor, A.S.M.; Yaacob, M.H.; Lim, H.N.; Huang, N.M.; Mahdi, M.A. Reduced graphene oxide/maghemite nanocomposite for detection of Lead ions in water using surface plasmon resonanc. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Mustapha Kamil, Y.; Al-Rekabi, S.H.; Yaacob, M.H.; Syahir, A.; Chee, H.Y.; Mahdi, M.A.; Abu Bakar, M.H. Detection of dengue using PAMAM dendrimer integrated tapered optical fiber sensor. Sci. Rep. 2019, 9, 13483. [Google Scholar] [CrossRef]
- Kamil, Y.M.; Bakar, M.H.A.; Al-Rekabi, S.H.; Yaacob, M.H.; Syahir, A.; Mahdi, M.A. PAMAM-Graphene Oxide-Integrated Microfiber Sensor for Label-Free Dengue II E Protein Detection. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–6. [Google Scholar] [CrossRef]
- Li, H.C.; Leng, Y.K.; Liao, Y.C.; Liu, B.; Luo, W.; Liu, J.; Wu, Q. Tapered Microfiber MZI Biosensor for Highly Sensitive Detection of Staphylococcus Aureus. IEEE Sens. J. 2022, 22, 5531–5539. [Google Scholar] [CrossRef]
- Chen, L.; Leng, Y.K.; Qiu, S.; Liu, B.; Liu, J.; Wan, S.P.; Wu, T.; Xu, H.; Xiong, Y.; Yuan, J. Ultrahigh-sensitivity label-free singlemode-tapered no core-singlemode fiber immunosensor for Listeria monocytogenes detection. Sens. Actuators B Chem. 2023, 376, 132930. [Google Scholar] [CrossRef]
- Tong, Z.; Zhao, Y.; Wang, X.; Li, P.; Zhang, W.; Zhang, J. Research on dual-parameter biosensor based on no-core fiber coated by composite film. Optik (Stuttg). 2022, 259, 169027. [Google Scholar] [CrossRef]
- Sharma, P.; Semwal, V.; Gupta, B.D. A highly selective LSPR biosensor for the detection of taurine realized on optical fiber substrate and gold nanoparticles. Opt. Fiber Technol. 2019, 52, 101962. [Google Scholar] [CrossRef]
- Liu, T.; Ding, H.; Zhan, C.; Huang, J.; Wang, S. Simply and cost-effectively fabricated AuNP-based fusion spliced transmissive optical fiber LSPR probes. Opt. Express 2021, 29, 7398–7409. [Google Scholar] [CrossRef] [PubMed]
- Aslan, K.; Lakowicz, J.R.; Geddes, C.D. Nanogold-plasmon-resonance-based glucose sensing. Anal. Biochem. 2004, 330, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Chocarro-Ruiz, B.; Pérez-Carvajal, J.; Avci, C.; Calvo-Lozano, O.; Alonso, M.I.; Maspoch, D.; Lechuga, L.M. A CO2 optical sensor based on self-assembled metal–organic framework nanoparticles. J. Mater. Chem. A 2018, 6, 13171–13177. [Google Scholar] [CrossRef]
- Idris, S.; Azeman, N.H.; Noor Azmy, N.A.; Ratnam, C.T.; Mahdi, M.A.; Bakar, A.A.A. Gamma irradiated Py/PVA for GOx immobilization on tapered optical fiber for glucose biosensing. Sens. Actuators B Chem. 2018, 273, 1404–1412. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Qian, S.; Liu, Z.; Wang, Q.; Gu, Y.; Wu, Z.; Jing, Z.; Sun, C.; Peng, W. A Novel Fiber Optic Surface Plasmon Resonance Biosensors with Special Boronic Acid Derivative to Detect Glycoprotein. Sensors 2017, 17, 2259. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhou, X.; Zhang, Y.; Chen, N.; Wang, S.; Zhang, S.; Zhao, Y. Optical fiber sensors for glucose concentration measurement: A. review. Opt. Laser Technol. 2021, 139, 106981. [Google Scholar] [CrossRef]
- Mustapha Kamil, Y.; Abu Bakar, M.H.; Mustapa, M.A.; Yaacob, M.H.; Syahir, A.; Mahdi, M.A. Sensitive and Specific Protein Sensing Using Single-Mode Tapered Fiber Immobilized With Biorecognition Molecules. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Suryandi, A.A.; Sarma, N.; Mohammed, A.; Peesapati, V.; Djurović, S. Fiber Optic Fiber Bragg Grating Sensing for Monitoring and Testing of Electric Machinery: Current State of the Art and Outlook. Machines 2022, 10, 1103. [Google Scholar] [CrossRef]
- Sun, D.; Guo, T.; Ran, Y.; Huang, Y.; Guan, B.-O. In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosens. Bioelectron. 2014, 61, 541–546. [Google Scholar] [CrossRef] [PubMed]
- DeLisa, M.P.; Zhang, Z.; Shiloach, M.; Pilevar, S.; Davis, C.C.; Sirkis, J.S.; Bentley, W.E. Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor. Anal. Chem. 2000, 72, 2895–2900. [Google Scholar]
- Tang, J.-L.; Cheng, S.-F.; Hsu, W.-T.; Chiang, T.-Y.; Chau, L.-K. Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating. Sens. Actuators B Chem. 2006, 119, 105–109. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, H.; Liu, B.; Miao, Y. Tilted fiber Bragg gratings: Principle and sensing applications. Photonic Sens. 2011, 1, 6–30. [Google Scholar] [CrossRef] [Green Version]
- Delmdahl, R.; Buchwald, K. Optics Fabrication: Fiber Bragg grating fabrication system is automated. Laser Focus World 2017. Available online: https://www.laserfocusworld.com/fiber-optics/article/16547082/optics-fabrication-fiber-bragg-grating-fabrication-system-is-automated (accessed on 15 December 2022).
- Wang, T.; Liu, K.; Jiang, J.; Xue, M.; Chang, P.; Liu, T. Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution. Opt. Express 2017, 25, 14900–14909. [Google Scholar]
- Hu, C.; Ma, X.; Wang, C.; Zhou, S.; Wu, H.; Sun, K. High-quality rapid fabrication method of a D-shaped optical fiber based on a CO2 laser. Opt. Mater. Express 2021, 11, 2025–2036. [Google Scholar] [CrossRef]
- Marques, L.; Hernandez, F.U.; James, S.W.; Morgan, S.P.; Clark, M.; Tatam, R.P.; Korposh, S. Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles. Biosens. Bioelectron. 2016, 75, 222–231. [Google Scholar] [CrossRef]
- Bekmurzayeva, A.; Dukenbayev, K.; Shaimerdenova, M.; Bekniyazov, I.; Ayupova, T.; Sypabekova, M.; Molardi, C.; Tosi, D. Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin. Sensors 2018, 18, 4298. [Google Scholar] [CrossRef]
- Kavitha, B.S.; Radhika, N.K.; Gorthi, S.S.; Asokan, S. Etched Fiber Bragg Grating Sensor for Quantification of DNA. IEEE Sens. J. 2021, 21, 1588–1595. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Liang, X.; Qiu, X.; Huang, Y.; Xie, C.; Xu, P.; Mao, W.; Guan, B.-O.; Albert, J. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings. Biosens. Bioelectron. 2016, 78, 221–228. [Google Scholar] [CrossRef]
- Shevchenko, Y.; Camci-Unal, G.; Cuttica, D.F.; Dokmeci, M.R.; Albert, J.; Khademhosseini, A. Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosens. Bioelectron. 2014, 56, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Guo, T.; Xie, C.; Xu, P.; Lao, J.; Zhang, X.; Xu, J.; Chen, X.; Huang, Y.; Liang, X.; et al. Specific Detection of Aquaporin-2 Using Plasmonic Tilted Fiber Grating Sensors. J. Light Technol. 2017, 35, 3360–3365. [Google Scholar] [CrossRef]
- Wang, Q.; Rajan, G.; Farrell, G.; Wang, P.; Semenova, Y.; Freir, T. Macrobending fibre loss filter, ratiometric wavelength measurement and application. Meas. Sci. Technol. 2007, 18, 3082–3088. [Google Scholar] [CrossRef]
- Ying, Y.; Si, G.; Luan, F.; Xu, K.; Qi, Y.; Li, H. Recent research progress of optical fiber sensors based on D-shaped structure. Opt. Laser Technol. 2017, 90, 149–157. [Google Scholar] [CrossRef]
- Cennamo, N.; Pasquardini, L.; Arcadio, F.; Vanzetti, L.E.; Bossi, A.M.; Zeni, L. D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Sci. Rep. 2019, 9, 18740. [Google Scholar] [CrossRef] [Green Version]
- Cennamo, N.; Pasquardini, L.; Arcadio, F.; Lunelli, L.; Vanzetti, L.; Carafa, V.; Altucci, L.; Zeni, L. SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor. Talanta 2021, 233, 122532. [Google Scholar] [CrossRef]
- Arcadio, F.; Zeni, L.; Perri, C.; D’Agostino, G.; Chiaretti, G.; Minardo, A.; Cennamo, N.; Porto, G. Bovine Serum Albumin Protein Detection by a Removable SPR Chip Combined with a Specific MIP Receptor. Chemosensors 2021, 9, 218. [Google Scholar] [CrossRef]
- Soares, M.S.; Silva, L.C.; Vidal, M.; Loyez, M.; Facão, M.; Caucheteur, C.; Segatto, M.E.V.; Costa, F.M.; Leitão, C.; Pereira, S.O.; et al. Label-free plasmonic immunosensor for cortisol detection in a D-shaped optical fiber. Biomed. Opt. Express 2022, 13, 3259–3274. [Google Scholar] [CrossRef]
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front. Chem. 2014, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Ridzwan, A.H.; Mansoor, A.; Dambul, K.D. Tapered optical fibre coated with chitosan for lead (II) ion sensing. Electron. Lett. 2016, 52, 1049–1050. [Google Scholar] [CrossRef]
Targeted Analyte | Sensing Layer | Sensitivity | Limit of Detection | Ref. |
---|---|---|---|---|
Uricase | Graphene oxide | 0.0089 nm/µM | 259 µM | [36] |
Staphylococcus | Dual-taper | - | 11 CFU/mL | [32] |
Taurine dioxygenase | Gold nanoparticles | 0.0190 AU/mM | 53 µM | [35] |
Urease | polyaniline-zinc oxide | - | 10 nM | [27] |
Lipase | Zeolitic imidazolate framework | 0.9 nm/nM | 0.23 nM | [38] |
Glucose | Gold nanoparticles | 0.9261 nm/mM | 322 µM | [37] |
Glucose | pyrrole/poly(vinyl alcohol)-glucose oxidase | 8.7 × 10−3 µWmM−1 | - | [39] |
Glucose | graphene oxide + gold nanoparticles | 1.06 nm/mM | 2.26 mM | [34] |
Glucose | poly (phenylboronic acid) | 0.1787%/nM | 5 mM | [41] |
Listeria monocytogenes | tapered single more no core fiber | - | 1.0 cell/mL | [33] |
Dengue E protein | Anti-Dengue E antibody | 5.02 nm/nM | 1 pM | [25] |
Dengue E protein | PAMAM | 19.53 nm/nM | 1 pM | [30] |
Dengue E protein | Graphene oxide | 12.77 nm/nM | 1 pM | [28] |
Dengue E protein | PAMAM + Graphene oxide | 13.25 nm/nM | 1 pM | [31] |
Avidin | Biotin | 20.368 nm/μM | - | [42] |
Targeted Analyte | Sensing Layer | Grating Architecture | Sensor Performance | Ref. |
---|---|---|---|---|
Thrombin | Thrombin-linking aptamers | Etched fiber Bragg grating | LOD: 10 nM | [52] |
DNA | Graphene oxide | Etched fiber Bragg grating | LOD: 261.87 pg/uL | [53] |
Streptavidin | Gold nanomaterials modified with biotin | Etched long period fiber Bragg grating | LOD: 6.88 nm/(ng/mm2) | [51] |
Proteinuria in rat urine | Gold layers of different thickness | Tilted fiber Bragg grating | LOD: 1.5 × 10−3 mg/mL | [54] |
Cellular behavior | Gold layer + fibronectin | Tilted fiber Bragg grating | - | [55] |
Aquaporin-2 | Gold layer + aquaporin-2-antibodies | Tilted fiber Bragg grating | 1.5 ng/mL | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustapha Kamil, Y.; Abu Bakar, M.H.; Zainuddin, N.H.; Yaacob, M.H.; Mahdi, M.A. Progress and Trends of Optical Microfiber-Based Biosensors. Biosensors 2023, 13, 270. https://doi.org/10.3390/bios13020270
Mustapha Kamil Y, Abu Bakar MH, Zainuddin NH, Yaacob MH, Mahdi MA. Progress and Trends of Optical Microfiber-Based Biosensors. Biosensors. 2023; 13(2):270. https://doi.org/10.3390/bios13020270
Chicago/Turabian StyleMustapha Kamil, Yasmin, Muhammad Hafiz Abu Bakar, Nurul Hida Zainuddin, Mohd Hanif Yaacob, and Mohd Adzir Mahdi. 2023. "Progress and Trends of Optical Microfiber-Based Biosensors" Biosensors 13, no. 2: 270. https://doi.org/10.3390/bios13020270
APA StyleMustapha Kamil, Y., Abu Bakar, M. H., Zainuddin, N. H., Yaacob, M. H., & Mahdi, M. A. (2023). Progress and Trends of Optical Microfiber-Based Biosensors. Biosensors, 13(2), 270. https://doi.org/10.3390/bios13020270