Validation of Rapid and Economic Colorimetric Nanoparticle Assay for SARS-CoV-2 RNA Detection in Saliva and Nasopharyngeal Swabs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Development and Characterization
2.2. Nasopharyngeal Sample RNA Testing
2.3. Asymptomatic Saliva Testing
2.4. Nasopharyngeal Swab Testing
3. Results
3.1. Development and Characterization of the Test
3.2. Detection of Extracted RNA from Nasopharyngeal Swabs
3.3. Asymptomatic Saliva Testing
3.4. Nasopharyngeal Swab Testing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peeling, R.W.; Olliaro, P.L.; Boeras, D.I.; Fongwen, N. Scaling up COVID-19 rapid antigen tests: Promises and challenges. Lancet Infect. Dis. 2021, 21, e290–e295. [Google Scholar] [CrossRef]
- Dinnes, J.; Sharma, P.; Berhane, S.; van Wyk, S.S.; Nyaaba, N.; Domen, J.; Taylor, M.; Cunningham, J.; Davenport, C.; Dittrich, S.; et al. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2022, 7, CD013705. [Google Scholar] [CrossRef] [PubMed]
- Kosack, C.S.; Page, A.L.; Klatser, P.R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 2017, 95, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Pu, R.; Liu, S.; Ren, X.; Shi, D.; Ba, Y.; Huo, Y.; Zhang, W.; Ma, L.; Liu, Y.; Yang, Y.; et al. The screening value of RT-LAMP and RT-PCR in the diagnosis of COVID-19: Systematic review and meta-analysis. J. Virol. Methods 2022, 300, 114392. [Google Scholar] [CrossRef] [PubMed]
- Subsoontorn, P.; Lohitnavy, M.; Kongkaew, C. The diagnostic accuracy of isothermal nucleic acid point-of-care tests for human coronaviruses: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 22349. [Google Scholar] [CrossRef] [PubMed]
- Yakoubi, A.; Dhafer, C.E.B. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. Plasmonics 2022, 18, 311–347. [Google Scholar] [CrossRef]
- Sanroman-Iglesias, M.; Lawrie, C.H.; Liz-Marzan, L.M.; Grzelczak, M. Nanoparticle-Based Discrimination of Single-Nucleotide Polymorphism in Long DNA Sequences. Bioconjug. Chem. 2017, 28, 903–906. [Google Scholar] [CrossRef] [Green Version]
- Sanroman-Iglesias, M.; Zhang, K.A.; Chuvilin, A.; Lawrie, C.H.; Grzelczak, M.; Liz-Marzan, L.M. Conjugated Polymers As Molecular Gates for Light-Controlled Release of Gold Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 15692–15695. [Google Scholar] [CrossRef] [Green Version]
- Alafeef, M.; Dighe, K.; Moitra, P.; Pan, D. Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano 2020, 14, 17028–17045. [Google Scholar] [CrossRef]
- Aithal, S.; Mishriki, S.; Gupta, R.; Sahu, R.P.; Botos, G.; Tanvir, S.; Hanson, R.W.; Puri, I.K. SARS-CoV-2 detection with aptamer-functionalized gold nanoparticles. Talanta 2022, 236, 122841. [Google Scholar] [CrossRef]
- Lopez-Valls, M.; Escalona-Noguero, C.; Rodriguez-Diaz, C.; Pardo, D.; Castellanos, M.; Milan-Rois, P.; Martinez-Garay, C.; Coloma, R.; Abreu, M.; Canton, R.; et al. CASCADE: Naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal. Chim. Acta 2022, 1205, 339749. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, S.; Khanbabaei, H.; Abbasi, S.; Fani, M.; Soltani, S.; Zandi, M.; Najafimemar, Z. CRISPR-Cas System: A Promising Diagnostic Tool for COVID-19. Avicenna J. Med. Biotechnol. 2022, 14, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, L.; Mazzaracchio, V.; Moscone, D.; Fillo, S.; De Santis, R.; Monte, A.; Amatore, D.; Lista, F.; Arduini, F. Paper-based immunoassay based on 96-well wax-printed paper plate combined with magnetic beads and colorimetric smartphone-assisted measure for reliable detection of SARS-CoV-2 in saliva. Biosens. Bioelectron. 2022, 200, 113909. [Google Scholar] [CrossRef]
- Huergo, L.F.; Selim, K.A.; Conzentino, M.S.; Gerhardt, E.C.M.; Santos, A.R.S.; Wagner, B.; Alford, J.T.; Deobald, N.; Pedrosa, F.O.; de Souza, E.M.; et al. Magnetic Bead-Based Immunoassay Allows Rapid, Inexpensive, and Quantitative Detection of Human SARS-CoV-2 Antibodies. ACS Sens. 2021, 6, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Yano, T.A.; Kajisa, T.; Ono, M.; Miyasaka, Y.; Hasegawa, Y.; Saito, A.; Otsuka, K.; Sakane, A.; Sasaki, T.; Yasutomo, K.; et al. Ultrasensitive detection of SARS-CoV-2 nucleocapsid protein using large gold nanoparticle-enhanced surface plasmon resonance. Sci. Rep. 2022, 12, 1060. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, Z.; Hu, H.; Zhou, Q.; Liu, W.; Li, X.; Liu, Z.; Wang, Y.; Ma, Y. A point-of-care selenium nanoparticle-based test for the combined detection of anti-SARS-CoV-2 IgM and IgG in human serum and blood. Lab Chip 2020, 20, 4255–4261. [Google Scholar] [CrossRef]
- Karakus, E.; Erdemir, E.; Demirbilek, N.; Liv, L. Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor. Anal. Chim. Acta 2021, 1182, 338939. [Google Scholar] [CrossRef]
- Park, Y.; Ryu, B.; Ki, S.J.; Chen, M.; Liang, X.; Kurabayashi, K. Bioinspired Plasmo-virus for Point-of-Care SARS-CoV-2 Detection. Nano Lett. 2023, 23, 98–106. [Google Scholar] [CrossRef]
- Halas, N.J.; Lal, S.; Chang, W.S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961. [Google Scholar] [CrossRef]
- Hurst, S.J.; Lytton-Jean, A.K.; Mirkin, C.A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 2006, 78, 8313–8318. [Google Scholar] [CrossRef]
- Lorenz, R.; Bernhart, S.H.; Honer Zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020, 14, 3822–3835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, P.K.; Huang, W.; El-Sayed, M.A. On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Lett. 2007, 7, 2080–2088. [Google Scholar] [CrossRef]
- Frank, F.; Keen, M.M.; Rao, A.; Bassit, L.; Liu, X.; Bowers, H.B.; Patel, A.B.; Cato, M.L.; Sullivan, J.A.; Greenleaf, M.; et al. Deep mutational scanning identifies SARS-CoV-2 Nucleocapsid escape mutations of currently available rapid antigen tests. Cell 2022, 185, 3603–3616. [Google Scholar] [CrossRef]
- Han, M.S.; Byun, J.H.; Cho, Y.; Rim, J.H. RT-PCR for SARS-CoV-2: Quantitative versus qualitative. Lancet Infect. Dis. 2021, 21, 165. [Google Scholar] [CrossRef] [PubMed]
- Arnaout, R.; Lee, R.A.; Lee, G.R.; Callahan, C.; Yen, C.F.; Smith, K.P.; Arora, R.; Kirby, J.E. SARS-CoV2 Testing: The Limit of Detection Matters. bioRxiv 2020. [Google Scholar] [CrossRef]
- Munoz-Prieto, A.; Rubic, I.; Gonzalez-Sanchez, J.C.; Kules, J.; Martinez-Subiela, S.; Ceron, J.J.; Bernal, E.; Torres-Cantero, A.; Vicente-Romero, M.R.; Mrljak, V.; et al. Saliva changes in composition associated to COVID-19: A preliminary study. Sci. Rep. 2022, 12, 10879. [Google Scholar] [CrossRef] [PubMed]
- Howes, P.D.; Chandrawati, R.; Stevens, M.M. Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 1247390. [Google Scholar] [CrossRef] [Green Version]
- Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.B.; Pan, D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano 2020, 14, 7617–7627. [Google Scholar] [CrossRef]
- Alafeef, M.; Moitra, P.; Dighe, K.; Pan, D. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat. Protoc. 2021, 16, 3141–3162. [Google Scholar] [CrossRef]
- Rodriguez Diaz, C.; Lafuente-Gomez, N.; Coutinho, C.; Pardo, D.; Alarcon-Iniesta, H.; Lopez-Valls, M.; Coloma, R.; Milan-Rois, P.; Domenech, M.; Abreu, M.; et al. Development of colorimetric sensors based on gold nanoparticles for SARS-CoV-2 RdRp, E and S genes detection. Talanta 2022, 243, 123393. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Mishra, S.; Sharma, R.; Agarwal, J.; Ghoshal, U.; Khanna, T.; Sharma, L.K.; Verma, S.K.; Mishra, P.; Tiwari, S. Development of RNA-Based Assay for Rapid Detection of SARS-CoV-2 in Clinical Samples. Intervirology 2022, 65, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Smyrlaki, I.; Ekman, M.; Lentini, A.; Rufino de Sousa, N.; Papanicolaou, N.; Vondracek, M.; Aarum, J.; Safari, H.; Muradrasoli, S.; Rothfuchs, A.G.; et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nat. Commun. 2020, 11, 4812. [Google Scholar] [CrossRef]
- Morecchiato, F.; Coppi, M.; Baccani, I.; Maggini, N.; Ciccone, N.; Antonelli, A.; Rossolini, G.M. Evaluation of extraction-free RT-PCR methods for faster and cheaper detection of SARS-CoV-2 using two commercial systems. Int. J. Infect. Dis. 2021, 112, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Vogels, C.B.F.; Watkins, A.E.; Harden, C.A.; Brackney, D.E.; Shafer, J.; Wang, J.; Caraballo, C.; Kalinich, C.C.; Ott, I.M.; Fauver, J.R.; et al. SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity. Med 2021, 2, 263–280. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, P.; Nuzzo, S.; Torino, E.; Condorelli, G.; Salvatore, M.; Grimaldi, A.M. Antifouling Strategies of Nanoparticles for Diagnostic and Therapeutic Application: A Systematic Review of the Literature. Nanomaterials 2021, 11, 780. [Google Scholar] [CrossRef]
- Welch, S.R.; Davies, K.A.; Buczkowski, H.; Hettiarachchi, N.; Green, N.; Arnold, U.; Jones, M.; Hannah, M.J.; Evans, R.; Burton, C.; et al. Analysis of Inactivation of SARS-CoV-2 by Specimen Transport Media, Nucleic Acid Extraction Reagents, Detergents, and Fixatives. J. Clin. Microbiol. 2020, 58, e01713-20. [Google Scholar] [CrossRef]
- Bajorath, J.; Hinrichs, W.; Saenger, W. The enzymatic activity of proteinase K is controlled by calcium. Eur. J. Biochem. 1988, 176, 441–447. [Google Scholar] [CrossRef]
Nasopharyngeal RNA (n = 188) | Saliva Samples (n = 635) | Nasopharyngeal Swabs (n = 320) | Average (n = 1143) | ||||
---|---|---|---|---|---|---|---|
Value | 95% CI | Value | 95% CI | Value | 95% CI | ||
Sensitivity | 92.86% | 84.11–97.64% | 93.75% | 82.80–98.69% | 94.57% | 89.14–97.79% | 93.73% |
Specificity | 93.22% | 87.08–97.03% | 97.96% | 96.46–98.94% | 94.76% | 90.58–97.46% | 95.31% |
Accuracy | 93.09% | 88.47–96.27% | 97.64% | 96.13–98.67% | 94.69% | 91.63–96.88% | 95.14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armesto, M.; Charconnet, M.; Marimón, J.M.; Fernández Regueiro, C.L.; Jia, J.; Yan, T.; Sorarrain, A.; Grzelczak, M.; Sanromán, M.; Vicente, M.; et al. Validation of Rapid and Economic Colorimetric Nanoparticle Assay for SARS-CoV-2 RNA Detection in Saliva and Nasopharyngeal Swabs. Biosensors 2023, 13, 275. https://doi.org/10.3390/bios13020275
Armesto M, Charconnet M, Marimón JM, Fernández Regueiro CL, Jia J, Yan T, Sorarrain A, Grzelczak M, Sanromán M, Vicente M, et al. Validation of Rapid and Economic Colorimetric Nanoparticle Assay for SARS-CoV-2 RNA Detection in Saliva and Nasopharyngeal Swabs. Biosensors. 2023; 13(2):275. https://doi.org/10.3390/bios13020275
Chicago/Turabian StyleArmesto, María, Mathias Charconnet, José M. Marimón, Cristina Lía Fernández Regueiro, Jia Jia, Tingdong Yan, Ane Sorarrain, Marek Grzelczak, María Sanromán, Mónica Vicente, and et al. 2023. "Validation of Rapid and Economic Colorimetric Nanoparticle Assay for SARS-CoV-2 RNA Detection in Saliva and Nasopharyngeal Swabs" Biosensors 13, no. 2: 275. https://doi.org/10.3390/bios13020275
APA StyleArmesto, M., Charconnet, M., Marimón, J. M., Fernández Regueiro, C. L., Jia, J., Yan, T., Sorarrain, A., Grzelczak, M., Sanromán, M., Vicente, M., Klempa, B., Zubiria, J., Peng, Y., Zhang, L., Zhang, J., & Lawrie, C. H. (2023). Validation of Rapid and Economic Colorimetric Nanoparticle Assay for SARS-CoV-2 RNA Detection in Saliva and Nasopharyngeal Swabs. Biosensors, 13(2), 275. https://doi.org/10.3390/bios13020275