Low-Cost Impedance Camera for Cell Distribution Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Impedance Imaging Array
2.2. Setup for Data and Image Acquisition
3. Results
3.1. Selection of MEA Excitation Conditions
3.2. Image Deblurring
3.3. Impedance Imaging
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bounik, R.; Cardes, F.; Ulusan, H.; Modena, M.M.; Hierlemann, A. Impedance Imaging of Cells and Tissues: Design and Applications. BME Front. 2022, 2022, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-E.; Rapino, S.; Girault, H.H.; Lesch, A. Electrochemical imaging of cells and tissues. Chem. Sci. 2018, 9, 4546–4554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petibois, C.; Cestelli Guidi, M. Bioimaging of cells and tissues using accelerator-based sources. Anal. Bioanal. Chem. 2008, 391, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, J.-F.; Dai, L. Recent Advances in Graphene Quantum Dots for Fluorescence Bioimaging from Cells through Tissues to Animals. Part. Part. Syst. Charact. 2015, 32, 515–523. [Google Scholar] [CrossRef]
- Meinen, S.; Frey, L.J.; Krull, R.; Dietzel, A. Resonant Mixing in Glass Bowl Microbioreactor Investigated by Microparticle Image Velocimetry. Micromachines 2019, 10, 284. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Li, S.; Zheng, J.; Li, Y.; Huang, H. Recent Progress in Microfluidic Models of the Blood-Brain Barrier. Micromachines 2019, 10, 375. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Zhu, Z.; Zhang, Z.; Xu, F.; Marchisio, M.A.; Wang, Z.; Pan, D.; Zhao, X.; Huang, Q.-A. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells. Electrophoresis 2021, 42, 1996–2009. [Google Scholar] [CrossRef]
- Elvira, L.; Vera, P.; Cañadas, F.J.; Shukla, S.K.; Montero, F. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering. Ultrasonics 2016, 64, 151–161. [Google Scholar] [CrossRef]
- Parry, J.D.; Holmes, A.K.; Unwin, M.E.; Laybourn-Parry, J. The use of ultrasonic imaging to evaluate the effect of protozoan grazing and movement on the topography of bacterial biofilms. Lett. Appl. Microbiol. 2007, 45, 364–370. [Google Scholar] [CrossRef]
- Yoshinobu, T.; Schöning, M.J. Light-addressable potentiometric sensors for cell monitoring and biosensing. Curr. Opin. Electrochem. 2021, 28, 100727. [Google Scholar] [CrossRef]
- Özsoylu, D.; Wagner, T.; Schöning, M.J. Electrochemical Cell-based Biosensors for Biomedical Applications. Curr. Top. Med. Chem. 2022, 22, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhou, B.; Wang, J.; Zhong, M.; Das, A.; Watkinson, M.; Hing, K.; Zhang, D.-W.; Krause, S. Photoelectrochemical Imaging System for the Mapping of Cell Surface Charges. Anal. Chem. 2019, 91, 5896–5903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, E.V.; Ledwig, V.; Bendas, S.; Reichl, S.; Dietzel, A. Tissue Barrier-on-Chip: A Technology for Reproducible Practice in Drug Testing. Pharmaceutics 2022, 14, 1451. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Bendas, S.; Krajka, V.; May, T.; Moritz, A.; Constantinou, I.; Reichl, S.; Dietzel, A. Self-loading microfluidic platform with ultra-thin nanoporous membrane for organ-on-chip by wafer-level processing. Front. Sens. 2022, 3, 974895. [Google Scholar] [CrossRef]
- Soley, A.; Lecina, M.; Gámez, X.; Cairó, J.J.; Riu, P.; Rosell, X.; Bragós, R.; Gòdia, F. On-line monitoring of yeast cell growth by impedance spectroscopy. J. Biotechnol. 2005, 118, 398–405. [Google Scholar] [CrossRef]
- De León, S.E.; Pupovac, A.; McArthur, S.L. Three-Dimensional (3D) cell culture monitoring: Opportunities and challenges for impedance spectroscopy. Biotechnol. Bioeng. 2020, 117, 1230–1240. [Google Scholar] [CrossRef]
- Schwan, H.P. Electrical Properties of Tissue and Cell Suspensions. Adv. Biol. Med. Phys. 1957, 5, 147–209. [Google Scholar] [CrossRef]
- Jamnik, J.; Maier, J.; Pejovnik, S. A new penetration impedance technique. Electrochim. Acta 1996, 41, 1011–1015. [Google Scholar] [CrossRef]
- Hu, X.; Yang, W. Planar capacitive sensors—Designs and applications. Sens. Rev. 2010, 30, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Rager, K.; Tang, B.; Schneemann, C.; Dworzak, A.; Oezaslan, M.; Dietzel, A. Ordered Porous Electrodes Obtained Using LIFT for Electrochemical Applications. Materials 2023, 16, 596. [Google Scholar] [CrossRef]
- Reculusa, S.; Heim, M.; Gao, F.; Mano, N.; Ravaine, S.; Kuhn, A. Design of Catalytically Active Cylindrical and Macroporous Gold Microelectrodes. Adv. Funct. Mater. 2011, 21, 691–698. [Google Scholar] [CrossRef]
- Szamocki, R.; Reculusa, S.; Ravaine, S.; Bartlett, P.N.; Kuhn, A.; Hempelmann, R. Tailored mesostructuring and biofunctionalization of gold for increased electroactivity. Angew. Chem. Int. Ed. Engl. 2006, 45, 1317–1321. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Montemayor, C.; Fatás, E.; Pingarrón, J.M. Characterization of alkanethiol-self-assembled monolayers-modified gold electrodes by electrochemical impedance spectroscopy. J. Electroanal. Chem. 2006, 586, 112–121. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, C.; Bera, N.K.; Chattopadhyay, D.; Karmakar, A.; Chattopadhyay, S. Analytical modelling of electrical impedance based adulterant sensor for aqueous sucrose solutions. J. Electroanal. Chem. 2017, 784, 133–139. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; IEEE: New York, NY, USA, 2010; pp. 2366–2369, ISBN 978-1-4244-7542-1. [Google Scholar]
Loffset (nH) | Rs (Ω) | CPE (µF) | CPE-P | Ccell (µF) | Rcell (Ω) | |
---|---|---|---|---|---|---|
30 g/L | 7 × 10−5 | 900 | 2 × 10−6 | 0.8 | 2.9 × 10−9 | 228 |
RMSE | 5 × 10−7 | 0.4 | 8 × 10−8 | 0.004 | 9.7 × 10−11 | 2.2 |
50 g/L | 7 × 10−5 | 920 | 2 × 10−6 | 0.8 | 4.3 × 10−9 | 182 |
RMSE | 8 × 10−7 | 2.2 | 4 × 10−8 | 0.002 | 9.3 × 10−11 | 2.1 |
70 g/L | 7 × 10−5 | 860 | 2 × 10−6 | 0.8 | 5.4 × 10−9 | 151 |
RMSE | 2 × 10−7 | 0.2 | 4 × 10−8 | 0.002 | 0.1 × 10−9 | 0.3 |
PSNR (ref, Img) (dB) | (c) | (d) |
---|---|---|
(i) | 13.7 | 14.9 |
(ii) | 11.3 | 13.2 |
(iii) | 6.1 | 16.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, B.; Liu, M.; Dietzel, A. Low-Cost Impedance Camera for Cell Distribution Monitoring. Biosensors 2023, 13, 281. https://doi.org/10.3390/bios13020281
Tang B, Liu M, Dietzel A. Low-Cost Impedance Camera for Cell Distribution Monitoring. Biosensors. 2023; 13(2):281. https://doi.org/10.3390/bios13020281
Chicago/Turabian StyleTang, Bo, Mengxi Liu, and Andreas Dietzel. 2023. "Low-Cost Impedance Camera for Cell Distribution Monitoring" Biosensors 13, no. 2: 281. https://doi.org/10.3390/bios13020281
APA StyleTang, B., Liu, M., & Dietzel, A. (2023). Low-Cost Impedance Camera for Cell Distribution Monitoring. Biosensors, 13(2), 281. https://doi.org/10.3390/bios13020281