Elucidation of DNA-Eltrombopag Binding: Electrochemical, Spectroscopic and Molecular Docking Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrochemical Studies
2.1.1. Materials and Apparatus
2.1.2. Fabrication of DNA/rGO/GCE
2.2. Spectrophotometric Studies
2.3. Physical Measurements and Instrumentation
2.4. Molecular Docking Simulations
2.4.1. DNA Receptor Preparation
2.4.2. ELT Ligand Preparation
2.5. Molecular Dynamics (MD) Simulations
3. Results & Discussion
3.1. Electrochemical Studies
3.1.1. Interaction Studies at the Biosensor
3.1.2. Interaction Studies at Nanobiosensor
Characterization of DNA/rGO/GCE
Electrochemical Investigation of ELT Interaction with DNA
3.2. Spectroscopic Studies
3.3. Molecular Docking & Molecular Dynamics Simulation Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, K. Thrombopoietin Receptor Agonists: Eltrombopag and Romiplostim for the Treatment of Chronic Immune Thrombocytopenia Purpura. Clin. J. Oncol. Nurs. 2019, 23, 212–216. [Google Scholar] [CrossRef]
- Cheng, G. Eltrombopag, a Thrombopoietin- Receptor Agonist in the Treatment of Adult Chronic Immune Thrombocytopenia: A Review of the Efficacy and Safety Profile. Ther. Adv. Hematol. 2012, 3, 155. [Google Scholar] [CrossRef] [Green Version]
- Ramotowska, S.; Ciesielska, A.; Makowski, M. What Can Electrochemical Methods Offer in Determining DNA-Drug Interactions? Molecules 2021, 26, 3478. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.; Hacke, A.C.M.; Inaba, J.; Pessôa, C.A.; Kerman, K. Electrochemical Detection of Specific Interactions between Apolipoprotein E Isoforms and DNA Sequences Related to Alzheimer’s Disease. Bioelectrochemistry 2020, 133, 107447. [Google Scholar] [CrossRef] [PubMed]
- Dogan-Topal, B.; Ozkan, S.A. A Novel Sensitive Electrochemical DNA Biosensor for Assaying of Anticancer Drug Leuprolide and Its Adsorptive Stripping Voltammetric Determination. Talanta 2011, 83, 780–788. [Google Scholar] [CrossRef]
- Bi, S.; Yan, L.; Wang, Y.; Pang, B.; Wang, T. Spectroscopic Study on the Interaction of Eugenol with Salmon Sperm DNA in Vitro. J. Lumin. 2012, 132, 2355–2360. [Google Scholar] [CrossRef]
- Kirsch, P.; Jakob, V.; Elgaher, W.A.M.; Walt, C.; Oberhausen, K.; Schulz, T.F.; Empting, M. Discovery of Novel Latency-Associated Nuclear Antigen Inhibitors as Antiviral Agents against Kaposi’s Sarcoma-Associated Herpesvirus. ACS Chem. Biol. 2020, 15, 388–395. [Google Scholar] [CrossRef]
- Khan, R.A.; Arjmand, F.; Tabassum, S.; Monari, M.; Marchetti, F.; Pettinari, C. Organometallic Ruthenium(II) Scorpionate as Topo IIα Inhibitor; in Vitro Binding Studies with DNA, HPLC Analysis and Its Anticancer Activity. J. Organomet. Chem. 2014, 771, 47–58. [Google Scholar] [CrossRef]
- Loo, F.C.; Ng, S.P.; Wu, C.M.L.; Kong, S.K. An Aptasensor Using DNA Aptamer and White Light Common-Path SPR Spectral Interferometry to Detect Cytochrome-c for Anti-Cancer Drug Screening. Sens. Actuators B Chem. 2014, 198, 416–423. [Google Scholar] [CrossRef]
- Adeniji, S.E.; Adamu Shallangwa, G.; Ebuka Arthur, D.; Abdullahi, M.; Mahmoud, A.Y.; Haruna, A. Quantum Modelling and Molecular Docking Evaluation of Some Selected Quinoline Derivatives as Anti-Tubercular Agents. Heliyon 2020, 6, e03639. [Google Scholar] [CrossRef]
- Congur, G.; Eksin, E.; Erdem, A. Levan Modified DNA Biosensor for Voltammetric Detection of Daunorubicin-DNA Interaction. Sens. Actuators B Chem. 2021, 326, 128818. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, M.; Ma, M.; Hai, H.; Li, J.; Shan, Y. A Novel Electrochemical DNA Biosensor for Transgenic Soybean Detection Based on Triple Signal Amplification. Anal. Chim. Acta 2019, 1078, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Liu, W.; Zheng, M.; Wang, R. Label-Free and Ultrasensitive Electrochemical DNA Biosensor Based on Urchinlike Carbon Nanotube-Gold Nanoparticle Nanoclusters. Anal. Chem. 2020, 92, 4780–4787. [Google Scholar] [CrossRef]
- Nguyen, A.B.N.; Maldonado, M.; Poch, D.; Sodia, T.; Smith, A.; Rowland, T.J.; Bonham, A.J. Electrochemical Dna Biosensor That Detects Early Celiac Disease Autoantibodies. Sensors 2021, 21, 2671. [Google Scholar] [CrossRef]
- Sadighbayan, D.; Sadighbayan, K.; Khosroushahi, A.Y.; Hasanzadeh, M. Recent Advances on the DNA-Based Electrochemical Biosensing of Cancer Biomarkers: Analytical Approach. TrAC Trends Anal. Chem. 2019, 119, 115609. [Google Scholar] [CrossRef]
- Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Faghih-Mirzaei, E. A Nanostructure Label-Free DNA Biosensor for Ciprofloxacin Analysis as a Chemotherapeutic Agent: An Experimental and Theoretical Investigation. New J. Chem. 2017, 41, 4985–4989. [Google Scholar] [CrossRef]
- Eksin, E.; Senturk, H.; Zor, E.; Bingol, H.; Erdem, A. Carbon Quantum Dot Modified Electrodes Developed for Electrochemical Monitoring of Daunorubicin-DNA Interaction. J. Electroanal. Chem. 2020, 862, 114011. [Google Scholar] [CrossRef]
- Ray, S.C. Applications of Graphene and Grpahene-Oxide Based Nanomaterials. ELSEVIER 2015, 53, 1689–1699. [Google Scholar]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Karimi, F.; Shabani-Nooshabadi, M.; Alizadeh, M.; Al-Othman, A.; Erk, N.; Yegya Raman, P.K.; Karaman, C. Novel Enzymatic Graphene Oxide Based Biosensor for the Detection of Glutathione in Biological Body Fluids. Chemosphere 2022, 287, 132187. [Google Scholar] [CrossRef]
- Soltani, T.; Kyu Lee, B. A Benign Ultrasonic Route to Reduced Graphene Oxide from Pristine Graphite. J. Colloid Interface Sci. 2017, 486, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Lerman, L.S. Structural Considerations in the Interaction of DNA and Acridines. J. Mol. Biol. 1961, 3, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.C.; Jain, S.C.; Sobell, H.M. Drug—Nucleic Acid Interaction: X-Ray Crystallographic Determination of an Ethidium—Dinucleoside Monophosphate Crystalline Complex, Ethidium: 5-Iodouridylyl(3′-5′)Adenosine. Philos. Trans. R. Soc. London. B Biol. Sci. 1975, 272, 137–146. [Google Scholar] [CrossRef]
- Pyle, A.M.; Rehmann, J.P.; Meshoyrer, R.; Turro, N.J.; Barton, J.K.; Kumar, C.V. Mixed-Ligand Complexes of Ruthenium(II): Factors Governing Binding to DNA. J. Am. Chem. Soc. 1989, 111, 3051–3058. [Google Scholar] [CrossRef]
- Lunn, G.; Sansone, E.B. Ethidium Bromide: Destruction and Decontamination of Solutions. Anal. Biochem. 1987, 162, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Şenel, P.; Agar, S.; İş, Y.S.; Altay, F.; Gölcü, A.; Yurtsever, M. Deciphering the Mechanism and Binding Interactions of Pemetrexed with DsDNA with DNA-Targeted Chemotherapeutics via Spectroscopic, Analytical, and Simulation Studies. J. Pharm. Biomed. Anal. 2022, 209, 114490. [Google Scholar] [CrossRef] [PubMed]
- Şenel, P.; Cetinkaya, A.; Kaya, S.İ.; Erdoğan, T.; Topal, B.D.; Gölcü, A.; Ozkan, S.A. Spectroscopic, Electrochemical, and Some Theoretical Studies on the Interactional of Neuraminidase Inhibitor Zanamivir with Double Helix Deoxyribonucleic Acid. J. Mol. Struct. 2022, 1262, 133029. [Google Scholar] [CrossRef]
- Waihenya, S.; Ş Enel, P.; Osonga, F.J.; Erdog, T.; Altay, F.; Gölcü, A.; Sadik, O.A. Mechanism of Interactions of DsDNA Binding with Apigenin and Its Sulfamate Derivatives Using Multispectroscopic, Voltammetric, and Molecular Docking Studies. ACS Publ. 2021, 6, 5137. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, N.; Şenel, P.; Erdoğan, T.; Gölcü, A. Elucidation of Binding Interactions and Mechanism of Rivastigmine Tartrate with DsDNA via Multi-Spectroscopic, Electrochemical, and Molecular Docking Studies. J. Mol. Struct. 2022, 1268, 133736. [Google Scholar] [CrossRef]
Technical | Property | Instrumentation | ELT Concentration (µM) | dsDNA Concentration (µM) |
---|---|---|---|---|
Absorption spectra | Range of 200–360 nm (with 1 cm quartz cuvettes) | T80 + UV/VIS spectrophotometer | 80 | 20–140 (increasing concentration range) |
Absorption spectra (for denaturation profile: temperature from 25 °C to 100 °C) | Range of 200–400 nm (with 1 cm quartz cuvettes) | T80 + UV/VIS spectrophotometer | 10 (and EtBr/Hoechst-33258 solution 10 µM) | 120 |
Fluorescence spectra | Range of 530–700 nm (excitation at 294 nm for EtBr studies) Range of 375–650 nm (excitation at 343 nm for Hoechst studies) | Agilent Technologies Spectrofluorometer | 12.5–175 (increasing concentration range) | 50 (with 5 µM for EtBr and Hoechst-33258) |
Viscosity measurements | Rheometer; plate sensor (d = 35 mm, gap = 1 mm) | Haake RheoStress1 | 30–360 (increasing concentration range) | 120 |
Compound | Tm (°C) ± RSD a | ΔTm (°C) |
---|---|---|
dsDNA | 72.2 °C ± 0.07 | - |
dsDNA + EtBr | 83.4 °C ± 0.08 | 11.6 °C |
dsDNA + Hoechst-33258 | 77.8 °C ± 0.17 | 5.6 °C |
dsDNA + Eltrombopag olamine | 81.5 °C ± 0.18 | 9.3 °C |
Sample No | Yield Stress (Pa) | K (Pa.sn) | n (—) | Instantaneous Viscosity (mPa.s) at 20 s−1 |
---|---|---|---|---|
Buffer | 0.34 ± 0.02 | 8.06 × 10−8 ± 3.01 × 10−4 | 2.77 ± 0.02 | 16.81 |
Eltrombopag olamine | 0.31 ± 0.04 | 1.74 × 10−5 ± 3.52 × 10−5 | 1.55 ± 0.05 | 15.60 |
dsDNA | 0.29 ± 0.06 | 2.34 × 10−5 ± 4.78 × 10−4 | 1.78 ± 0.04 | 14.71 |
sample 1 | 0.30 ± 0.06 | 4.10 × 10−5 ± 2.89 × 10−6 | 1.77 ± 0.03 | 15.41 |
sample 2 | 0.30 ± 0.02 | 4.15 × 10−5 ± 4.11 × 10−6 | 1.70 ± 0.06 | 15.34 |
sample 3 | 0.30 ± 0.02 | 3.26 × 10−5 ± 3.48 × 10−5 | 1.76 ± 0.05 | 15.32 |
sample 4 | 0.30 ± 0.05 | 4.89 × 10−5 ± 7.75 × 10−5 | 1.78 ± 0.01 | 15.51 |
sample 5 | 0.30 ± 0.01 | 3.43 × 10−4 ± 6.12 × 10−3 | 1.60 ± 0.01 | 17.07 |
sample 6 | 0.31 ± 0.01 | 1.17 × 10−4 ± 5.65 × 10−5 | 1.50 ± 0.04 | 16.02 |
sample 7 | 0.32 ± 0.01 | 1.58 × 10−4 ± 7.23 × 10−4 | 1.45 ± 0.09 | 16.61 |
sample 8 | 0.33 ± 0.06 | 1.05 × 10−4 ± 6.00 × 10−3 | 1.47 ± 0.03 | 16.93 |
sample 9 | 0.32 ± 0.04 | 1.01 × 10−4 ± 2.42 × 10−6 | 1.46 ± 0.01 | 16.41 |
sample 10 | 0.33 ± 0.08 | 1.12 × 10−4 ± 7.63 × 10−6 | 1.50 ± 0.01 | 17.00 |
sample 11 | 0.33 ± 0.10 | 1.00 × 10−4 ± 2.97 × 10−5 | 1.51 ± 0.06 | 16.96 |
sample 12 | 0.33 ± 0.07 | 1.35 × 10−4 ± 3.91 × 10−5 | 1.51 ± 0.06 | 17.11 |
DNA Location | % of H-Bonds Drug-Nucleotide | Binding Energy (kcal/mol) | H-Bond Distance (Å) |
---|---|---|---|
Adenine | - | - | - |
Guanine | 38.2 | −15.4 | 1.7 |
Cytosine | 41.3 | −15.2 | 1.7 |
Thymine | - | - | - |
Phosphodiester | 20.5 | −12.9 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheraghi, S.; Şenel, P.; Dogan Topal, B.; Agar, S.; Majidian, M.; Yurtsever, M.; Bellur Atici, E.; Gölcü, A.; Ozkan, S.A. Elucidation of DNA-Eltrombopag Binding: Electrochemical, Spectroscopic and Molecular Docking Techniques. Biosensors 2023, 13, 300. https://doi.org/10.3390/bios13030300
Cheraghi S, Şenel P, Dogan Topal B, Agar S, Majidian M, Yurtsever M, Bellur Atici E, Gölcü A, Ozkan SA. Elucidation of DNA-Eltrombopag Binding: Electrochemical, Spectroscopic and Molecular Docking Techniques. Biosensors. 2023; 13(3):300. https://doi.org/10.3390/bios13030300
Chicago/Turabian StyleCheraghi, Somaye, Pelin Şenel, Burcu Dogan Topal, Soykan Agar, Mahsa Majidian, Mine Yurtsever, Esen Bellur Atici, Ayşegül Gölcü, and Sibel A. Ozkan. 2023. "Elucidation of DNA-Eltrombopag Binding: Electrochemical, Spectroscopic and Molecular Docking Techniques" Biosensors 13, no. 3: 300. https://doi.org/10.3390/bios13030300
APA StyleCheraghi, S., Şenel, P., Dogan Topal, B., Agar, S., Majidian, M., Yurtsever, M., Bellur Atici, E., Gölcü, A., & Ozkan, S. A. (2023). Elucidation of DNA-Eltrombopag Binding: Electrochemical, Spectroscopic and Molecular Docking Techniques. Biosensors, 13(3), 300. https://doi.org/10.3390/bios13030300