Plasmon Modulated Upconversion Biosensors
Abstract
:1. Introduction
2. Characteristics of UCNPs
2.1. Lanthanide Upconversion Basics: Mechanism and Origin
2.2. Lanthanide Upconversion Composition
3. Principles and Applications of Photon Modulation in Upconversion-Based Biosensors
3.1. A Brief Theoretical Principles of Plasmon Modulated Upconversion
3.2. Plasmon Modulated Upconversion Sensing of Ions and Small Biomolecules
3.3. Plasmon Modulated Upconversion Sensing of Biomacromolecules
3.4. Plasmon Modulated Upconversion Sensing of Viruses
3.5. Plasmon Modulated Upconversion Sensing of Temperature
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AChE | acetylcholinesterase |
Con-A | concanavalin A |
CTAB | cetyl trimethyl ammonium bromide |
COVID | coronavirus disease |
DNA | deoxyribonucleic acid |
FRET | fluoresecence resonance energy transfer |
GSH | gluthathione |
HBV | Hepatitis B virus |
Ln | Lanthanide |
LOD | limit of detection |
NAAO | nanoporous alumina |
NCs | nanoclusters |
NDs | nanodots |
NPs | nanoparticle |
NIR | near-infrared |
NSs | nanosheets |
PAA | polyacrylic acid |
PAMAM | polyamidoamine |
PEI | polyethylene imine |
PLA | polyacrylic acid |
PNPs | plasmonic nanoparticles |
PSA | polystyrene-co-acrylic acid |
RNA | ribonucleic acid |
SPR | surface plasmon resonance |
TEM | transmission electron microscopy |
UCNPs | upconversion nanoparticles |
References
- Zhu, X.; Zhang, J.; Liu, J.; Zhang, Y. Recent Progress of Rare-Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. Adv. Sci. 2019, 6, 1901358. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Wei, R.; Feng, J.; Zhang, H. Tailored Lanthanide-Doped Upconversion Nanoparticles and Their Promising Bioapplication Prospects. Coord. Chem. Rev. 2018, 364, 10–32. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X. Recent Advances in the Chemistry of Lanthanide-Doped Upconversion Nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Ghazy, A.; Safdar, M.; Lastusaari, M.; Savin, H.; Karppinen, M. Advances in Upconversion Enhanced Solar Cell Performance. Sol. Energy Mater. Sol. Cells 2021, 230, 111234. [Google Scholar] [CrossRef]
- Yang, X.; Jin, X.; Zheng, A.; Duan, P. Dual Band-Edge Enhancing Overall Performance of Upconverted Near-Infrared Circularly Polarized Luminescence for Anticounterfeiting. ACS Nano 2023, 17, 2661–2668. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.A.; Aldajani, K.M.; AlHazaa, A.N.; Albrithen, H.A. Recent Progress of Fluorescent Materials for Fingermarks Detection in Forensic Science and Anti-Counterfeiting. Coord. Chem. Rev. 2022, 462, 214523. [Google Scholar] [CrossRef]
- Peltomaa, R.; Benito-Peña, E.; Gorris, H.H.; Moreno-Bondi, M.C. Biosensing Based on Upconversion Nanoparticles for Food Quality and Safety Applications. Analyst 2021, 146, 13–32. [Google Scholar] [CrossRef]
- Xu, R.; Cao, H.; Lin, D.; Yu, B.; Qu, J. Lanthanide-Doped Upconversion Nanoparticles for Biological Super-Resolution Fluorescence Imaging. Cell Rep. Phys. Sci. 2022, 3, 100922. [Google Scholar] [CrossRef]
- Xie, L.; Hong, Z.; Zan, J.; Wu, Q.; Yang, Z.; Chen, X.; Ou, X.; Song, X.; He, Y.; Li, J.; et al. Broadband Detection of X-Ray, Ultraviolet, and Near-Infrared Photons Using Solution-Processed Perovskite–Lanthanide Nanotransducers. Adv. Mater. 2021, 33, 1–7. [Google Scholar] [CrossRef]
- Lee, G.; Park, Y. Il Lanthanide-Doped Upconversion Nanocarriers for Drug and Gene Delivery. Nanomaterials 2018, 8, 511. [Google Scholar] [CrossRef] [Green Version]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef]
- Han, S.; Beack, S.; Jeong, S.; Hwang, B.W.; Shin, M.H.; Kim, H.; Kim, S.; Hahn, S.K. Hyaluronate Modified Upconversion Nanoparticles for near Infrared Light-Triggered on-off Tattoo Systems. RSC Adv. 2017, 7, 14805–14808. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Hwang, B.W.; Jeon, E.Y.; Jung, D.; Lee, G.H.; Keum, D.H.; Kim, K.S.; Yun, S.H.; Cha, H.J.; Hahn, S.K. Upconversion Nanoparticles/Hyaluronate-Rose Bengal Conjugate Complex for Noninvasive Photochemical Tissue Bonding. ACS Nano 2017, 11, 9979–9988. [Google Scholar] [CrossRef]
- Sun, C.; Gradzielski, M. Advances in Fluorescence Sensing Enabled by Lanthanide-Doped Upconversion Nanophosphors. Adv. Colloid Interface Sci. 2022, 300, 102579. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, D.; Schartner, E.P.; Lu, Y.; Liu, Y.; Zvyagin, A.V.; Zhang, L.; Dawes, J.M.; Xi, P.; Piper, J.A.; et al. Single-Nanocrystal Sensitivity Achieved by Enhanced Upconversion Luminescence. Nat. Nanotechnol. 2013, 8, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Gargas, D.J.; Chan, E.M.; Ostrowski, A.D.; Aloni, S.; Altoe, M.V.P.; Barnard, E.S.; Sanii, B.; Urban, J.J.; Milliron, D.J.; Cohen, B.E.; et al. Engineering Bright Sub-10-Nm Upconverting Nanocrystals for Single-Molecule Imaging. Nat. Nanotechnol. 2014, 9, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Qin, X.; Zheng, K.; Liu, X. Energy Flux Manipulation in Upconversion Nanosystems. Acc. Chem. Res. 2019, 52, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Maini, A.K. Lasers and Optoelectronics: Fundamentals, Devices and Applications; Maini, A.K., Ed.; John Wiley and Sons Ltd.: Chichester, UK, 2013; ISBN 9781118688977. [Google Scholar]
- Molkenova, A.; Atabaev, T.S.; Hong, S.W.; Mao, C.; Han, D.-W.; Kim, K.S. Designing Inorganic Nanoparticles into Computed Tomography and Magnetic Resonance (CT/MR) Imaging-Guidable Photomedicines. Mater. Today Nano 2022, 18, 100187. [Google Scholar] [CrossRef]
- Jares-Erijman, E.A.; Jovin, T.M. FRET Imaging. Nat. Biotechnol. 2003, 21, 1387–1395. [Google Scholar] [CrossRef]
- Francés-Soriano, L.; Estebanez, N.; Pérez-Prieto, J.; Hildebrandt, N. DNA-Coated Upconversion Nanoparticles for Sensitive Nucleic Acid FRET Biosensing. Adv. Funct. Mater. 2022, 32, 2201541. [Google Scholar] [CrossRef]
- Kotulska, A.M.; Pilch-Wróbel, A.; Lahtinen, S.; Soukka, T.; Bednarkiewicz, A. Upconversion FRET Quantitation: The Role of Donor Photoexcitation Mode and Compositional Architecture on the Decay and Intensity Based Responses. Light Sci. Appl. 2022, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Corbella Bagot, C.; Rappeport, E.; Ba Tis, T.; Park, W. Quantitative Modeling and Experimental Verification of Förster Resonant Energy Transfer in Upconversion Nanoparticle Biosensors. J. Appl. Phys. 2021, 130, 023102. [Google Scholar] [CrossRef]
- Wu, D.M.; García-Etxarri, A.; Salleo, A.; Dionne, J.A. Plasmon-Enhanced Upconversion. J. Phys. Chem. Lett. 2014, 5, 4020–4031. [Google Scholar] [CrossRef]
- Jiang, W.; Yi, J.; Li, X.; He, F.; Niu, N.; Chen, L. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications. Biosensors 2022, 12, 1036. [Google Scholar] [CrossRef]
- Jin, H.; Yang, M.; Gui, R. Ratiometric Upconversion Luminescence Nanoprobes from Construction to Sensing, Imaging, and Phototherapeutics. Nanoscale 2022, 15, 859–906. [Google Scholar] [CrossRef]
- Auzel, F. History of Upconversion Discovery and Its Evolution. J. Lumin. 2020, 223, 116900. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y. An Efficient and User-Friendly Method for the Synthesis of Hexagonal-Phase NaYF4:Yb, Er/Tm Nanocrystals with Controllable Shape and Upconversion Fluorescence. Nanotechnology 2008, 19, 345606. [Google Scholar] [CrossRef]
- Liu, G. Advances in the Theoretical Understanding of Photon Upconversion in Rare-Earth Activated Nanophosphors. Chem. Soc. Rev. 2015, 44, 1635–1652. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Li, Z. Tuning the Photoluminescence Properties of β-NaYF4:Yb,Er by Bi3+ Doping Strategy. Cryst. Res. Technol. 2022, 2100162, 3–7. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in Highly Doped Upconversion Nanoparticles. Nat. Commun. 2018, 9, 2415. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Wu, J.; Wang, Y. Application of Upconversion-Luminescent Materials in Temperature Sensors. In Upconversion Nanophosphors; Elsevier: Amsterdam, The Netherlands, 2022; pp. 291–310. [Google Scholar]
- Wang, L.; Li, P.; Li, Y. Down- and up-Conversion Luminescent Nanorods. Adv. Mater. 2007, 19, 3304–3307. [Google Scholar] [CrossRef]
- Naccache, R.; Yu, Q.; Capobianco, J.A. The Fluoride Host: Nucleation, Growth, and Upconversion of Lanthanide-Doped Nanoparticles. Adv. Opt. Mater. 2015, 3, 482–509. [Google Scholar] [CrossRef]
- Ansari, A.A.; Muthumareeswaran, M.R.; Lv, R. Coordination Chemistry of the Host Matrices with Dopant Luminescent Ln3+ Ion and Their Impact on Luminescent Properties. Coord. Chem. Rev. 2022, 466, 214584. [Google Scholar] [CrossRef]
- Holmberg, R.J.; Aharen, T.; Murugesu, M. Paramagnetic Nanocrystals: Remarkable Lanthanide-Doped Nanoparticles with Varied Shape, Size, and Composition. J. Phys. Chem. Lett. 2012, 3, 3721–3733. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, H.; Fang, W.; Mishra, S.; Jeanneau, E.; Ledoux, G.; Zhang, J.; Daniele, S. Influence of Na+ Ion Doping on the Phase Change and Upconversion Emissions of the GdF3: Yb3+, Tm3+ Nanocrystals Obtained from the Designed Molecular Precursors. RSC Adv. 2015, 5, 100535–100545. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, R.; Xie, X.; Huang, L.; Liu, X. Nonlinear Spectral and Lifetime Management in Upconversion Nanoparticles by Controlling Energy Distribution. Nanoscale 2016, 8, 6666–6673. [Google Scholar] [CrossRef] [Green Version]
- del Rosal, B.; Rocha, U.; Ximendes, E.C.; Martín Rodríguez, E.; Jaque, D.; Solé, J.G. Nd3+ Ions in Nanomedicine: Perspectives and Applications. Opt. Mater. Amst. 2017, 63, 185–196. [Google Scholar] [CrossRef]
- Chen, G.; Damasco, J.; Qiu, H.; Shao, W.; Ohulchanskyy, T.Y.; Valiev, R.R.; Wu, X.; Han, G.; Wang, Y.; Yang, C.; et al. Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal. Nano Lett. 2015, 15, 7400–7407. [Google Scholar] [CrossRef] [Green Version]
- Slooff, L.H.; Polman, A.; Oude Wolbers, M.P.; Van Veggel, F.C.J.M.; Reinhoudt, D.N.; Hofstraat, J.W. Optical Properties of Erbium-Doped Organic Polydentate Cage Complexes. J. Appl. Phys. 1998, 83, 497–503. [Google Scholar] [CrossRef]
- Wiesholler, L.M.; Frenzel, F.; Grauel, B.; Würth, C.; Resch-Genger, U.; Hirsch, T. Yb,Nd,Er-Doped Upconversion Nanoparticles: 980 Nm: Versus 808 Nm Excitation. Nanoscale 2019, 11, 13440–13449. [Google Scholar] [CrossRef]
- Boyer, J.C.; Vetrone, F.; Cuccia, L.A.; Capobianco, J.A. Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors. J. Am. Chem. Soc. 2006, 128, 7444–7445. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Cao, T.; Peng, J.; Liu, Y.; Wu, Y.; Feng, W.; Zhang, Y.; Li, F. Hydrothermal Synthesis of NaLuF 4: 153Sm,Yb,Tm Nanoparticles and Their Application in Dual-Modality Upconversion Luminescence and SPECT Bioimaging. Biomaterials 2013, 34, 774–783. [Google Scholar] [CrossRef]
- Marin, R.; Halimi, I.; Errulat, D.; Mazouzi, Y.; Lucchini, G.; Speghini, A.; Murugesu, M.; Hemmer, E. Harnessing the Synergy between Upconverting Nanoparticles and Lanthanide Complexes in a Multiwavelength-Responsive Hybrid System. ACS Photonics 2019, 6, 436–445. [Google Scholar] [CrossRef]
- Huang, Y.; You, H.; Song, Y.; Jia, G.; Yang, M.; Zheng, Y.; Zhang, L.; Liu, K. Half Opened Microtubes of NaYF4:Yb,Er Synthesized in Reverse Microemulsion under Solvothermal Condition. J. Cryst. Growth 2010, 312, 3214–3218. [Google Scholar] [CrossRef]
- Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. A General Strategy for Nanocrystal Synthesis. Nature 2005, 437, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Bergstrand, J.; Duan, S.; Zhan, Q.; Widengren, J.; Ågren, H.; Liu, H. Overtone Vibrational Transition-Induced Lanthanide Excited-State Quenching in Yb3+/Er3+-Doped Upconversion Nanocrystals. ACS Nano 2018, 12, 10572–10575. [Google Scholar] [CrossRef] [Green Version]
- Rabouw, F.T.; Prins, P.T.; Villanueva-Delgado, P.; Castelijns, M.; Geitenbeek, R.G.; Meijerink, A. Quenching Pathways in NaYF4:Er3+,Yb3+ Upconversion Nanocrystals. ACS Nano 2018, 12, 4812–4823. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shen, D.; Yang, J.; Yao, C.; Che, R.; Zhang, F.; Zhao, D. Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties. Chem. Mater. 2013, 25, 1, 106–112. [Google Scholar] [CrossRef]
- Zhang, D.; Dong, Y.; Li, D.; Jia, H.; Qin, W. Growth Regularity and Phase Diagrams of NaLu0.795−xYxF4 Upconversion Nanocrystals Synthesized by Automatic Nanomaterial Synthesizer. Nano Res. 2021, 14, 4760–4767. [Google Scholar] [CrossRef]
- Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Carneiro Neto, A.N.; Longo, R.L.; Wu, Y.; Malta, O.L.; Liu, X. Surface Plasmon-Photon Coupling in Lanthanide-Doped Nanoparticles. J. Phys. Chem. Lett. 2021, 12, 1520–1541. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhou, D.; Xu, W.; Cui, S.; Chen, X.; Wang, H.; Xu, S.; Song, H. Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals. ACS Appl. Mater. Interfaces 2016, 8, 11667–11674. [Google Scholar] [CrossRef] [PubMed]
- Saboktakin, M.; Ye, X.; Oh, S.J.; Hong, S.H.; Fafarman, A.T.; Chettiar, U.K.; Engheta, N.; Murray, C.B.; Kagan, C.R. Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation. ACS Nano 2012, 6, 8758–8766. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wang, X.; Wang, K.; Guo, Z. Sequence-Specific Detection of Cytosine Methylation in DNA: Via the FRET Mechanism between Upconversion Nanoparticles and Gold Nanorods. Chem. Commun. 2016, 52, 8377–8380. [Google Scholar] [CrossRef]
- Dong, J.; Gao, W.; Han, Q.; Wang, Y.; Qi, J.; Yan, X.; Sun, M. Plasmon-Enhanced Upconversion Photoluminescence: Mechanism and Application. Rev. Phys. 2019, 4, 100026. [Google Scholar] [CrossRef]
- Wang, L.; Guo, S.; Liu, D.; He, J.; Zhou, J.; Zhang, K.; Wei, Y.; Pan, Y.; Gao, C.; Yuan, Z.; et al. Plasmon-Enhanced Blue Upconversion Luminescence by Indium Nanocrystals. Adv. Funct. Mater. 2019, 29, 1901242. [Google Scholar] [CrossRef]
- Zong, H.; Mu, X.; Sun, M. Physical Principle and Advances in Plasmon-Enhanced Upconversion Luminescence. Appl. Mater. Today 2019, 15, 43–57. [Google Scholar] [CrossRef]
- Mendez-Gonzalez, D.; Melle, S.; Calderón, O.G.; Laurenti, M.; Cabrera-Granado, E.; Egatz-Gómez, A.; López-Cabarcos, E.; Rubio-Retama, J.; Díaz, E. Control of Upconversion Luminescence by Gold Nanoparticle Size: From Quenching to Enhancement. Nanoscale 2019, 11, 13832–13844. [Google Scholar] [CrossRef]
- Liu, B.; Tan, H.; Chen, Y. Upconversion Nanoparticle-Based Fluorescence Resonance Energy Transfer Assay for Cr(III) Ions in Urine. Anal. Chim. Acta 2013, 761, 178–185. [Google Scholar] [CrossRef]
- Fang, A.; Chen, H.; Li, H.; Liu, M.; Zhang, Y.; Yao, S. Glutathione Regulation-Based Dual-Functional Upconversion Sensing-Platform for Acetylcholinesterase Activity and Cadmium Ions. Biosens. Bioelectron. 2017, 87, 545–551. [Google Scholar] [CrossRef]
- Sun, L.; Wang, T.; Sun, Y.; Li, Z.; Song, H.; Zhang, B.; Zhou, G.; Zhou, H.; Hu, J. Fluorescence Resonance Energy Transfer between NH2–NaYF4:Yb,Er/NaYF4@SiO2 Upconversion Nanoparticles and Gold Nanoparticles for the Detection of Glutathione and Cadmium Ions. Talanta 2020, 207, 120294. [Google Scholar] [CrossRef]
- Wu, S.; Duan, N.; Shi, Z.; Fang, C.; Wang, Z. Dual Fluorescence Resonance Energy Transfer Assay between Tunable Upconversion Nanoparticles and Controlled Gold Nanoparticles for the Simultaneous Detection of Pb2+ and Hg2+. Talanta 2014, 128, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, L.; Chen, M.; Chen, Q. Amine Functionalized NaY/GdF4:Yb,Er Upconversion-Silver Nanoparticles System as Fluorescent Turn-off Probe for Sensitive Detection of Cr(III). J. Photochem. Photobiol. A Chem. 2020, 388, 112203. [Google Scholar] [CrossRef]
- Sun, C.; Gradzielski, M. Fluorescence Sensing of Cyanide Anions Based on Au-Modified Upconversion Nanoassemblies. Analyst 2021, 146, 2152–2159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lu, F.; Cai, Z.; Song, S.; Jiang, L.; Min, Q.; Wu, X.; Zhu, J.J. Plasmonic Modulation of the Upconversion Luminescence Based on Gold Nanorods for Designing a New Strategy of Sensing MicroRNAs. Anal. Chem. 2020, 92, 11795–11801. [Google Scholar] [CrossRef]
- Kannan, P.; Abdul Rahim, F.; Chen, R.; Teng, X.; Huang, L.; Sun, H.; Kim, D.H. Au Nanorod Decoration on NaYF4:Yb/Tm Nanoparticles for Enhanced Emission and Wavelength-Dependent Biomolecular Sensing. ACS Appl. Mater. Interfaces 2013, 5, 3508–3513. [Google Scholar] [CrossRef]
- Xiao, Y.; Zeng, L.; Xia, T.; Wu, Z.; Liu, Z. Construction of an Upconversion Nanoprobe with Few-Atom Silver Nanoclusters as the Energy Acceptor. Angew. Chem. Int. Ed. 2015, 54, 5323–5327. [Google Scholar] [CrossRef]
- Wiesholler, L.M.; Genslein, C.; Schroter, A.; Hirsch, T. Plasmonic Enhancement of NIR to UV Upconversion by a Nanoengineered Interface Consisting of NaYF4:Yb,Tm Nanoparticles and a Gold Nanotriangle Array for Optical Detection of Vitamin B12 in Serum. Anal. Chem. 2018, 90, 14247–14254. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, Q.; Li, H.; Ouyang, Q.; Zhao, J. Fabricating a Novel Label-Free Aptasensor for Acetamiprid by Fluorescence Resonance Energy Transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au Nanoparticles. Biosens. Bioelectron. 2016, 80, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Han, Y.; Wang, S.; Ye, Z.; Wei, L.; Xiao, L. Single-Particle LRET Aptasensor for the Sensitive Detection of Aflatoxin B1 with Upconversion Nanoparticles. Anal. Chem. 2019, 91, 11856–11863. [Google Scholar] [CrossRef]
- Jesu Raj, J.G.; Quintanilla, M.; Mahmoud, K.A.; Ng, A.; Vetrone, F.; Zourob, M. Sensitive Detection of SsDNA Using an LRET-Based Upconverting Nanohybrid Material. ACS Appl. Mater. Interfaces 2015, 7, 18257–18265. [Google Scholar] [CrossRef]
- Chen, X.; Lan, J.; Liu, Y.; Li, L.; Yan, L.; Xia, Y.; Wu, F.; Li, C.; Li, S.; Chen, J. A Paper-Supported Aptasensor Based on Upconversion Luminescence Resonance Energy Transfer for the Accessible Determination of Exosomes. Biosens. Bioelectron. 2018, 102, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yang, L.; Lu, F.; Wu, X.; Zhu, J.J. A Universal Upconversion Sensing Platform for the Sensitive Detection of Tumour-Related NcRNA through an Exo III-Assisted Cycling Amplification Strategy. Small 2018, 14, 1703858. [Google Scholar] [CrossRef]
- Li, X.; Wei, L.; Pan, L.; Yi, Z.; Wang, X.; Ye, Z.; Xiao, L.; Li, H.W.; Wang, J. Homogeneous Immunosorbent Assay Based on Single-Particle Enumeration Using Upconversion Nanoparticles for the Sensitive Detection of Cancer Biomarkers. Anal. Chem. 2018, 90, 4807–4814. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Yang, C.; Ge, Z.; Yang, H. Fluorescence Resonance Energy Transfer from NaYF4:Yb,Er to Nano Gold and Its Application for Glucose Determination. Sens. Actuators B Chem. 2018, 255, 1316–1324. [Google Scholar] [CrossRef]
- Wu, S.; Kong, X.J.; Cen, Y.; Yuan, J.; Yu, R.Q.; Chu, X. Fabrication of a LRET-Based Upconverting Hybrid Nanocomposite for Turn-on Sensing of H2O2 and Glucose. Nanoscale 2016, 8, 8939–8946. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Lu, F.; Wu, X.C.; Zhu, J.J. An Upconversion Fluorescent Resonant Energy Transfer Biosensor for Hepatitis B Virus (HBV) DNA Hybridization Detection. Analyst 2015, 140, 7622–7628. [Google Scholar] [CrossRef]
- Tsang, M.K.; Ye, W.; Wang, G.; Li, J.; Yang, M.; Hao, J. Ultrasensitive Detection of Ebola Virus Oligonucleotide Based on Upconversion Nanoprobe/Nanoporous Membrane System. ACS Nano 2016, 10, 598–605. [Google Scholar] [CrossRef]
- Li, L.; Song, M.; Lao, X.; Pang, S.Y.; Liu, Y.; Wong, M.C.; Ma, Y.; Yang, M.; Hao, J. Rapid and Ultrasensitive Detection of SARS-CoV-2 Spike Protein Based on Upconversion Luminescence Biosensor for COVID-19 Point-of-Care Diagnostics. Mater. Des. 2022, 223, 111263. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yan, Z.; Han, L.; Zhou, D.; Wang, Y.; Pan, L.; Tu, K. Upconversion Fluorescence Nanoprobe-Based FRET for the Sensitive Determination of Shigella. Biosensors 2022, 12, 795. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Lei, H.; Li, B. Plasmon-Induced Selective Enhancement of Green Emission in Lanthanide-Doped Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 42935–42942. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, X.; Liu, W.; Gao, Z.; Zhong, L.; Qin, Y.; Li, B.; Li, J. Semiconductor Plasmon Enhanced Upconversion toward a Flexible Temperature Sensor. ACS Appl. Mater. Interfaces 2023, 15, 4469–4476. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.; Almemar, Z.; Jiang, K.; Culhane, K.; Machado, R.; Hagen, G.; Kotko, A.; Dmytruk, I.; Spendier, K.; Pinchuk, A. Imaging of Biological Cells Using Luminescent Silver Nanoparticles. Nanoscale Res. Lett. 2016, 11, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.; Du, P.; Wang, X.; Huang, M.; Sun, L.D.; Wang, T.; Wang, Z. Upconversion Fluorescence Resonance Energy Transfer Aptasensors for H5N1 Influenza Virus Detection. ACS Omega 2021, 6, 15236–15245. [Google Scholar] [CrossRef]
- Alexaki, K.; Kyriazi, M.E.; Greening, J.; Taemaitree, L.; El-Sagheer, A.H.; Brown, T.; Zhang, X.; Muskens, O.L.; Kanaras, A.G. A SARS-Cov-2 Sensor Based on Upconversion Nanoparticles and Graphene Oxide. RSC Adv. 2022, 12, 18445–18449. [Google Scholar] [CrossRef]
- Guo, J.; Chen, S.; Tian, S.; Liu, K.; Ni, J.; Zhao, M.; Kang, Y.; Ma, X.; Guo, J. 5G-Enabled Ultra-Sensitive Fluorescence Sensor for Proactive Prognosis of COVID-19. Biosens. Bioelectron. 2021, 181, 113160. [Google Scholar] [CrossRef]
- Martiskainen, I.; Talha, S.M.; Vuorenpää, K.; Salminen, T.; Juntunen, E.; Chattopadhyay, S.; Kumar, D.; Vuorinen, T.; Pettersson, K.; Khanna, N.; et al. Upconverting Nanoparticle Reporter–Based Highly Sensitive Rapid Lateral Flow Immunoassay for Hepatitis B Virus Surface Antigen. Anal. Bioanal. Chem. 2021, 413, 967–978. [Google Scholar] [CrossRef]
- Martiskainen, I.; Juntunen, E.; Salminen, T.; Vuorenpää, K.; Bayoumy, S.; Vuorinen, T.; Khanna, N.; Pettersson, K.; Batra, G.; Talha, S.M. Double-Antigen Lateral Flow Immunoassay for the Detection of Anti-HIV-1 and -2 Antibodies Using Upconverting Nanoparticle Reporters. Sensors 2021, 21, 330. [Google Scholar] [CrossRef]
- Huang, C.; Wei, Q.; Hu, Q.; Wen, T.; Xue, L.; Li, S.; Zeng, X.; Shi, F.; Jiao, Y.; Zhou, L. Rapid Detection of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Total Antibodies by up-Converting Phosphor Technology-Based Lateral-Flow Assay. Luminescence 2019, 34, 162–167. [Google Scholar] [CrossRef]
- Sheena, B.S.; Hiebert, L.; Han, H.; Ippolito, H.; Abbasi-Kangevari, M.; Abbasi-Kangevari, Z.; Abbastabar, H.; Abdoli, A.; Abubaker Ali, H.; Adane, M.M.; et al. Global, Regional, and National Burden of Hepatitis B, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol. Hepatol. 2022, 7, 796–829. [Google Scholar] [CrossRef]
NIR laser, λ | 808 nm | 915 nm | 980 nm | 1064 nm |
MPE value | ~0.329 W/cm2 | ~0.538 W/cm2 | ~0.726 W/cm2 | ~1.0 W/cm2 |
Sensitizer | Absorption Wavelength, λ | Absorption Cross-Section, cm2 |
---|---|---|
Ytterbium (Yb3+) | 980 nm | ~10−20 |
Neodymium (Nd3+) | 740 nm 800 nm 860 nm | ~10−19 |
Erbium (Er3+) | 1500 nm | 1.1 × 10−20 cm2 |
PNPs | Size | λ abs. | UCNPs | Coating | Size | NIR Laser | λ em. | Analyte | LOD | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Au NPs | 13 nm | 522 nm | NaYF4:Yb20%,Er2% | lysine | 70 nm | 980 nm | 540 nm | Cr3+ | 0.8 nM | [61] |
Au NRs Au NBs | 9–10 nm 15 nm | 515/692 nm 525 nm | NaYF4:Yb20%,Ho2%, Mn | PAA | 20–30 nm | 980 nm | 542 nm, 660 nm | Pb2+, Hg2+ | 50 pM 150 pM | [64] |
Au NPs | 20 nm | 528 nm | NaYF4:Yb20%,Er5% | CTAB | 20 nm | 980 nm | - | Cd2+ Ache | 0.2 μM 0.015 U/mL | [62] |
Au NPs | 15 nm | 521 nm | NaYF4:Yb20%,Er2% @ NaYF4 | SiO2 (2 nm) | 37 nm × 28 nm | 980 nm | 522/545/654 nm | Cd2+ GSH | 0.059 μM 0.016 μM | [63] |
Ag NPs | 12 nm | 398 nm | NaY/GdF4:30%Yb20%,Er2% | NH2 | 32 nm | 980 nm | 545/660 nm | Cr3+ | 34 nM | [65] |
Au NPs | 1.7 nm | 535 nm | NaYF4:Yb20%,Er2%@ NaYF4:Yb20% | PEI (8 nm) | 43 nm | 980 nm | 655 nm | CN− | 1.53 μM | [66] |
Au NRs | 80 nm × 25 nm | - | NaYF4@NaYF4:Yb20%,Er2% @ NaYF4 | H1 | 10 nm | 980 nm | 543 nm | microRNA | 0.036 fM | [67] |
Au NRs | ~45 nm | 520 nm | NaYF4:Yb20%,Tm2% | PAMAM (~2.5 nm) | ~90 nm | 980 nm | 450/470/805 nm | uric acid | 1 pM | [68] |
Ag NCs | 1.9 nm | 500/620 nm | NaYF4:Yb20%,Tm2% | PEI | 30 nm | 980 nm | 480 nm | biothiols | - | [69] |
Au NRs | - | - | NaYF4:Yb20%,Tm2% | PEI | 27.7 nm | 980 nm | 656 nm | DNA methylation | 7 pM | [56] |
Au arrays | - | - | NaYF4:Yb25%,Tm0.3% | PAA | 26 nm | 980 nm | 345/450/475/ 800 nm | Vitamin B12 | 3.0 nM | [70] |
Au NPs | 13 nm | 521 nm | NaYF4:Yb20%,Ho2% | SiO2 (12 nm) | 115 nm | 980 nm | 483/543/640 nm | ABA aptamer | 3.2 nM | [71] |
Au NPs | ~50 nm | - | NaYF4:Yb20%,Er2% | PAA | ~43 nm | 980 nm | - | Aflatoxin B1 | 0.17 ng/mL | [72] |
Au NPs | - | 544 nm | NaYF4:Yb27%,Tm0.5% | SiO2/PSA | 20 nm | 975 nm | - | ssDNA | 1 pM | [73] |
Au NRs | 27 nm × 54 nm | 630 nm | NaYF4:Yb,Er | PEI | 25 nm | 980 nm | 545/660 nm | Exosome | 1.1 × 103 part./μL | [74] |
Au NPs | 5 nm | ~543 nm | NaYF4:Yb20%,Er2%@NaYF4 | LDNA | 21 nm | 980 nm | 543 nm | miR-21 | 0.54 fM | [75] |
Au NPs | ~50 nm | ~530 nm | NaYF4:Yb20%,Er2% | PSA | ~42 nm | 980 nm | ~550 nm | antibodies (Ab1) | 2.3 pM | [76] |
Au NPs | 30 nm | 520 nm | NaYF4:Yb20%,Er2% | Con-A | 40–55 nm | 980 nm | 545/675 nm | glucose | 0.02 μM | [77] |
Ag NPs | 7.8 nm | 434 nm | NaYF4:Yb30%,Tm0.5%@NaYF4 | bared | 24 nm | 980 nm | 345/360/450/ 474 nm | glucose H2O2 | 1.41 μM 1.08 μM | [78] |
Au NPs | 11.9 nm | 540 nm | NaYF4:Yb18%,Er2% | PEI | 48 nm | 980 nm | 543/656 nm | Hepatitis B HBV DNA | 250 pM | [79] |
Au NPs | - | 523 nm | BaGdF5:Yb20%,Er2% | NAAO | 14 nm | 980 nm | 523/546/654 nm | Ebola | 500 fM | [80] |
Au NRs | ~78 nm × 15.5 nm | 965 nm | NaYF4:Yb11.9%,Tm0.1% | PEI | ~30 nm | 980 nm | 480/800 nm | COVID S protein | 1.06 fg/mL | [81] |
Au NPs | 20 nm | 400–700 nm | NaYF4:Yb,20%Er2% | Apt2 | 35 nm | 525/545/650 nm | Shigella | 30 CFU/mL | [82] | |
Au nanofilm | 18 nm | 980 nm | NaYF4:Yb20%,Er2% | microfiber | 38 nm | 980 nm | 523/545/655 nm | T(K) | 325 K–811K | [83] |
W18O49 | 100–800 nm × 5–30 nm | 600–1400 nm | NaYF4:Yb2%@NaYF4:Er20% | PLA fiber | 35 nm | 980 nm | 520/540/654 nm | T(K) | 298 K–358 K | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molkenova, A.; Choi, H.E.; Park, J.M.; Lee, J.-H.; Kim, K.S. Plasmon Modulated Upconversion Biosensors. Biosensors 2023, 13, 306. https://doi.org/10.3390/bios13030306
Molkenova A, Choi HE, Park JM, Lee J-H, Kim KS. Plasmon Modulated Upconversion Biosensors. Biosensors. 2023; 13(3):306. https://doi.org/10.3390/bios13030306
Chicago/Turabian StyleMolkenova, Anara, Hye Eun Choi, Jeong Min Park, Jin-Ho Lee, and Ki Su Kim. 2023. "Plasmon Modulated Upconversion Biosensors" Biosensors 13, no. 3: 306. https://doi.org/10.3390/bios13030306
APA StyleMolkenova, A., Choi, H. E., Park, J. M., Lee, J. -H., & Kim, K. S. (2023). Plasmon Modulated Upconversion Biosensors. Biosensors, 13(3), 306. https://doi.org/10.3390/bios13030306