Electrochemistry Test Strip as Platform for In Situ Detection of Blood Levels of Antipsychotic Clozapine in Finger-Pricked Sample Volume
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensor Fabrication
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Electrochemical Characteristics
3.2. Electrochemical Clz Measurements
3.3. Selectivity, Reproducibility, and Real Sample Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shamsi, A.; Ahour, F.; Sehatnia, B. Nickel oxide nanoparticles decorated graphene quantum dot as an effective electrode modifier for electrocatalytic oxidation and analysis of clozapine. J. Solid State Electrochem. 2018, 22, 2681–2689. [Google Scholar] [CrossRef]
- Senel, M.; Durmus, Z.; Alachkar, A. Measurement of the Antipsychotic Clozapine Using Reduced Graphene Oxide Nanocomposites-Au/Pd/Pt Electrodes. Electroanalysis 2021, 33, 1585–1595. [Google Scholar] [CrossRef]
- Jin, W.R.; Xu, Q.; Li, W. Determination of clozapine by capillary zone electrophoresis following end-column amperometric detection with simplified capillary/electrode alignment. Electrophoresis 2000, 21, 1415–1420. [Google Scholar] [CrossRef]
- Zhang, G.; Alvin, V.T., Jr.; Bartlett, M.G. Sensitive liquid chromatography/tandem mass spectrometry method for the simultaneous determination of olanzapine, risperidone, 9-hydroxyrisperidone, clozapine, haloperidol and ziprasidone in rat brain tissue. J. Chromatogr. B 2007, 858, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Taha, E.A.; Soliman, S.M.; Abdellatef, H.E.; Ayad, M.M. Colorimetric methods for the determination of some tricyclic antidepressant drugs in their pure and dosage forms. Microchim. Acta 2002, 140, 175–182. [Google Scholar] [CrossRef]
- Richter, K. Determination of clozapine in human serum by capillary gas chromatography. J. Chromatogr. Biomed. Appl. 1988, 434, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Al-Ghannam, S.H.M. Spectrophotometric determination of clozapine based on its oxidation with bromate in a micellar medium. Il Farmaco 2004, 59, 907–911. [Google Scholar] [CrossRef]
- Tammari, E.; Nezhadali, A.; Lotfi, S.; Veisi, H. Fabrication of an electrochemical sensor based on magnetic nanocomposite Fe3O4/β-alanine/Pd modified glassy carbon electrode for determination of nanomolar level of clozapine in biological model and pharmaceutical samples. Sens. Actuators B Chem. 2017, 241, 879–886. [Google Scholar] [CrossRef]
- Senel, M.; Dervisevic, M.; Kokkokoğlu, F. Electrochemical DNA biosensors for label-free breast cancer gene marker detection. Anal. Bioanal. Chem. 2017, 411, 2925–2935. [Google Scholar] [CrossRef]
- Dervisevic, E.; Dervisevic, M.; Nyangwebah, J.N.; Şenel, M. Development of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT bio-nanocomposite film. Sens. Actuators B Chem. 2015, 246, 920–926. [Google Scholar] [CrossRef]
- Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Impedimetric Detection of Calreticulin by a Disposable Immunosensor Modified with a Single-Walled Carbon Nanotube-Conducting Polymer Nanocomposite. ACS Biomater. Sci. Eng. 2022, 8, 3773–3784. [Google Scholar] [CrossRef]
- Rachna Rawal, C.; Pundir, S. Development of an amperometric sulfite biosensor based on SOx/PBNPs/PPY modified ITO electrode. Int. J. Biol. Macromol. 2012, 51, 449–455. [Google Scholar] [CrossRef]
- Senel, M.; Abasıyanık, M.F. Construction of a Novel Glucose Biosensor Based on Covalent Immobilization of Glucose Oxidase on Poly(glycidyl methacrylate-co-vinylferrocene). Electroanalysis 2010, 22, 1765–1771. [Google Scholar] [CrossRef]
- Tian, Y.; Mao, L.; Okajima, T.; Ohsaka, T. A carbon fiber microelectrode-based third-generation biosensor for superoxide anion. Biosens. Bioelectron. 2005, 21, 557–564. [Google Scholar] [CrossRef]
- Lakhera, P.; Chaudhary, V.; Jh, A.; Singh, R.; Kush, P.; Kumare, P. Recent developments and fabrication of the different electrochemical biosensors based on modified screen printed and glassy carbon electrodes for the early diagnosis of diverse breast cancer biomarkers. Mater. Today Chem. 2022, 26, 101129. [Google Scholar] [CrossRef]
- Auwal, M.M.; Kiely, J.; Luxton, R.; Honeychurch, K.C. Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. Trends Anal. Chem. 2021, 139, 116254. [Google Scholar]
- Sanli, S.; Moulahouma, H.; Ugurlu, O.; Ghorbanizamani, F.; Zinar Pinar, G.; Evran, S.; Coskunol, H.; Timur, S. Screen printed electrode-based biosensor functionalized with magnetic cobalt/single-chain antibody fragments for cocaine biosensing in different matrices. Talanta 2020, 217, 121111. [Google Scholar] [CrossRef]
- Reza Aflatoonian, M.; Tajik, S.; Mohtat, B.; Aflatoonian, B.; Sheikh Shoaie, I.; Beitollahi, H.; Zhang, K.; Jang, H.W.; Shokouhimeh, M. Direct electrochemical detection of clozapine by RuO2 nanoparticles-modified screen-printed electrode. RSC Adv. 2020, 10, 13021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Siavash Moakhar, R.; Sudalaiyadum Perumal, A.; Roman, H.N.; Mashid, S.; Wachsmann-Hogiu, S. An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection. Sci. Rep. 2020, 10, 9527. [Google Scholar] [CrossRef] [PubMed]
- Torres-Rivero, K.; Florido, A.; Bastos-Arrieta, J. Recent Trends in the Improvement of the Electrochemical Response of Screen-Printed Electrodes by Their Modification with Shaped Metal Nanoparticles. Sensors 2021, 21, 2596. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Sheikhshoaie, M.; Sheikhshoaie, I.; Ranjbar, M.; Alizadeh, J.; Maxakato, N.W.; Abbaspourrad, A. A novel electrochemical epinine sensor using amplified CuO nanoparticles and a n-hexyl-3-methylimidazolium hexafluorophosphate electrode. New J. Chem. 2019, 43, 2362–2367. [Google Scholar] [CrossRef]
- Huang, X.; Xu, S.; Zhao, W.; Xu, M.; Wei, W.; Luo, J.; Li, X.; Liu, X. Screen-Printed Carbon Electrodes Modified with Polymeric Nanoparticle-Carbon Nanotube Composites for Enzymatic Biosensing. ACS Appl. Nano Mater. 2020, 3, 9158–9166. [Google Scholar] [CrossRef]
- Muhammad, A.; Hajian, R.; Yusof, N.A.; Shams, N.; Abdullah, J.; Woid, P.M.; Garmestani, H. A screen printed carbon electrode modified with carbon nanotubes and gold nanoparticles as a sensitive electrochemical sensor for determination of thiamphenicol residue in milk. RSC Adv. 2018, 8, 2714. [Google Scholar] [CrossRef] [Green Version]
- Tajik, S.; Beitollahi, H.; Aflatoonianbd, M.R.; Mohtate, B.; Aflatooniana, B.; Sheikh Shoaie, I.; Khalilzadehg, M.A.; Ziasistanif, M.; Zhangh, K.; Jang, H.W.; et al. Fabrication of magnetic iron oxide-supported copper oxide nanoparticles (Fe3O4/CuO): Modified screen-printed electrode for electrochemical studies and detection of desipramine. RSC Adv. 2020, 10, 15171–15178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beitollahi, H.; Tajik, S.; Dourandish, Z.; Garkani Nejad, F. Simple Preparation and Characterization of Hierarchical Flower-like NiCo2O4 Nanoplates: Applications for Sunset, Yellow Electrochemical Analysis. Biosensors 2022, 12, 912. [Google Scholar] [CrossRef] [PubMed]
- Özmen, E.N.; Kartal, E.; Turan, M.B.; Yazıcıoğlu, A.; Niazi, J.H.; Qureshi, A. Graphene and carbon nanotubes interfaced electrochemical nanobiosensors for the detection of SARS-CoV-2 (COVID-19) and other respiratory viral infections: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 129, 112356. [Google Scholar]
- Dervisevic, M.; Cevik, E.; Durmuş, Z.; Şenel, M. Electrochemical sensing platforms based on the different carbon derivative incorporated interface. Mater. Sci. Eng. C 2016, 58, 790–798. [Google Scholar]
- Senel, M.; Dervisevic, E.; Alhassen, S.; Dervisevic, M.; Alachkar, A.; Cadarso, V.J.; Voelcker, N.H. Microfluidic Electrochemical Sensor for Cerebrospinal Fluid and Blood Dopamine Detection in a Mouse Model of Parkinson’s Disease. Anal. Chem. 2020, 92, 12347–12355. [Google Scholar]
- Gosser, D.K. Cyclic Voltammetry-Simulation and Analysis of Reaction Mechanisms, 1st ed.; VCH: New York, NY, USA, 1993. [Google Scholar]
- Shukla, R.P.; Ben-Yoav, H. A Chitosan-Carbon Nanotube-Modified Microelectrode for In Situ Detection of Blood Levels of the Antipsychotic Clozapine in a Finger-Pricked Sample Volume. Adv. Healthc. Mater. 2019, 8, 1900462. [Google Scholar]
- Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M. An electrochemical sensor for clozapine at ruthenium doped TiO2 nanoparticles modified electrode. Sens. Actuators B 2017, 47, 858–867. [Google Scholar]
- Sriprasertsuk, S.; Mathias, S.C.; Varcoe, J.R.; Crean, C.J. Polypyrrole-coated carbon fibre electrodes for paracetamol and clozapine drug sensing. Electroanal. Chem. 2021, 897, 115608. [Google Scholar]
- Attas, A.A. Novel PVC Membrane Selective Electrode for the Determination of Clozapine in Pharmaceutical Preparations. Int. J. Electrochem. Sci. 2009, 4, 9. [Google Scholar]
- Mashhadizadeh, M.; Efshar, E. Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochim. Acta 2013, 87, 816. [Google Scholar]
- Rouhollahi, A.; Kouchaki, M.; Seidi, S. Electrically stimulated liquid phase microextraction combined with differential pulse voltammetry: A new and efficient design for in situ determination of clozapine from complicated matrices. RSC Adv. 2016, 6, 12943. [Google Scholar]
Electrode | Technique | LR * (µM) | LD * (nM) | Ref. |
---|---|---|---|---|
Nf/MWCNT on CTS | CV DPV SWV i-t | 0.1–5.0 0.1–5.0 0.1–5.0 0.1–5.0 | 116 104 83 192 | This work |
RDTNP * | SWV | 0.9–40 | 43 | [9] |
PPFE * | DPV | 50–500 | 6000 | [32] |
ISE * | Potentiometry | 10–10,000 | 3400 | [33] |
TiO2/CPE * | DPV | 0.5–45 | 61 | [34] |
PGE * | DPV | 0.0095–1.5 | 2.86 | [35] |
RuTiO2/CPE * | SWV | 09–40 | 0.43 | [31] |
Spiked (µM) | Detected (µM) | Recovery (%) | RSD * (%) n:3 |
---|---|---|---|
0 | 0 | Not detected | - |
0.25 | 0.23 | 92 | 2.4 |
0.5 | 0.47 | 94 | 2.1 |
1 | 1.03 | 103 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senel, M. Electrochemistry Test Strip as Platform for In Situ Detection of Blood Levels of Antipsychotic Clozapine in Finger-Pricked Sample Volume. Biosensors 2023, 13, 346. https://doi.org/10.3390/bios13030346
Senel M. Electrochemistry Test Strip as Platform for In Situ Detection of Blood Levels of Antipsychotic Clozapine in Finger-Pricked Sample Volume. Biosensors. 2023; 13(3):346. https://doi.org/10.3390/bios13030346
Chicago/Turabian StyleSenel, Mehmet. 2023. "Electrochemistry Test Strip as Platform for In Situ Detection of Blood Levels of Antipsychotic Clozapine in Finger-Pricked Sample Volume" Biosensors 13, no. 3: 346. https://doi.org/10.3390/bios13030346
APA StyleSenel, M. (2023). Electrochemistry Test Strip as Platform for In Situ Detection of Blood Levels of Antipsychotic Clozapine in Finger-Pricked Sample Volume. Biosensors, 13(3), 346. https://doi.org/10.3390/bios13030346