Low-Temperature Loop-Mediated Isothermal Amplification Operating at Physiological Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Conventional LAMP Assay
2.3. Optimizing the Reaction Composition of Low-Temperature LAMP
2.4. Optimizing the DNA Probe of Low-Temperature LAMP
2.5. Assay Validation in a Regular Heat Block
2.6. Low-Temperature LAMP for the Detection of miR-21
3. Results and Discussion
3.1. Construction of Low-Temperature LAMP
3.2. Optimization of Reaction Conditions
3.3. Optimization of Length of Each Part of SLP
3.4. Optimization of Primer Length and Concentration
3.5. Sensitivity of Low-Temperature LAMP
3.6. Assay Validation in a Regular Heat Block
3.7. Application of Low-Temperature LAMP for the Detection of miRNA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatti, G.K.; Khullar, N.; Sidhu, I.S.; Navik, U.S.; Reddy, A.P.; Reddy, P.H.; Bhatti, J.S. Emerging Role of Non-coding RNA in Health and Disease. Metab. Brain Dis. 2021, 36, 1119–1134. [Google Scholar] [CrossRef] [PubMed]
- Tribolet, L.; Kerr, E.; Cowled, C.; Bean, A.G.D.; Stewart, C.R.; Dearnley, M.; Farr, R.J. MicroRNA Biomarkers for Infectious Diseases: From Basic Research to Biosensing. Front. Microbiol. 2020, 11, 1197. [Google Scholar] [CrossRef] [PubMed]
- Dronina, J.; Samukaite-Bubniene, U.; Ramanavicius, A. Advances and Insights in the Diagnosis of Viral Infections. J. Nanobiotechnol. 2021, 19, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.; Shin, J.; Choi, H.J.; Park, K.S. Split T7 Promoter-Based Isothermal Transcription Amplification for One-Step Fluorescence Detection of SARS-CoV-2 and Emerging Variants. Biosens. Bioelectron. 2022, 208, 114221. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Kim, S.; Han, J.; Kim, J.H.; Park, K.S. Equipment-Free, Salt-Mediated Immobilization of Nucleic Acids for Nucleic Acid Lateral Flow Assays. Sens. Actuators B Chem. 2022, 351, 130975. [Google Scholar] [CrossRef]
- Vindeirinho, J.M.; Pinho, E.; Azevedo, N.F.; Almeida, C. SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Front. Cell. Infect. Microbiol. 2022, 12, 263. [Google Scholar] [CrossRef]
- Oliveira, B.B.; Veigas, B.; Baptista, P.V. Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard”. Front. Sens. 2021, 2, 752600. [Google Scholar] [CrossRef]
- Chen, J.J.; Li, K.T. Analysis of PCR Kinetics inside a Microfluidic DNA Amplification System. Micromachines 2018, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Yoon, T.; Park, J.; Park, K.S. Sensitive and Simultaneous Detection of Hygiene Indicator Bacteria Using an Enhanced CRISPR/Cas System in Combination with a Portable Fluorescence Detector. Sens. Actuators B Chem. 2022, 365, 131871. [Google Scholar] [CrossRef]
- Compton, J. Nucleic Acid Sequence-Based Amplification. Nature 1991, 350, 91–92. [Google Scholar] [CrossRef]
- Walker, G.T.; Fraiser, M.S.; Schram, J.L.; Little, M.C.; Nadeau, J.G.; Malinowski, D.P. Strand Displacement Amplification—An Isothermal, in Vitro DNA Amplification Technique. Nucleic Acids Res. 1992, 20, 1691–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, M.; Xu, Y.; Kong, H. Helicase-Dependent Isothermal DNA Amplification. EMBO Rep. 2004, 5, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA Detection Using Recombination Proteins. PLoS Biol. 2006, 4, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Fire, A.; Xu, S.Q. Rolling Replication of Short DNA Circles. Proc. Natl. Acad. Sci. USA 1995, 92, 4641–4645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ness, J.; Van Ness, L.K.; Galas, D.J. Isothermal Reactions for the Amplification of Oligonucleotides. Proc. Natl. Acad. Sci. USA 2003, 100, 4504–4509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [Green Version]
- Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; von Stetten, F. Loop-Mediated Isothermal Amplification (LAMP)—Review and Classification of Methods for Sequence-Specific Detection. Anal. Methods 2020, 12, 717–746. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, J.H.; Kim, S.; Park, J.S.; Cha, B.S.; Lee, E.S.; Han, J.; Shin, J.; Jang, Y.; Park, K.S. Loop-Mediated Isothermal Amplification-Based Nucleic Acid Lateral Flow Assay for the Specific and Multiplex Detection of Genetic Markers. Anal. Chim. Acta 2022, 1205, 339781. [Google Scholar] [CrossRef]
- Shang, Y.; Sun, J.; Ye, Y.; Zhang, J.; Zhang, Y.; Sun, X. Loop-Mediated Isothermal Amplification-Based Microfluidic Chip for Pathogen Detection. Crit. Rev. Food Sci. Nutr. 2020, 60, 201–224. [Google Scholar] [CrossRef]
- Soroka, M.; Wasowicz, B.; Rymaszewska, A. Loop-Mediated Isothermal Amplification (LAMP): The Better Sibling of PCR? Cells 2021, 10, 1931. [Google Scholar] [CrossRef]
- Chaouch, M. Loop-mediated Isothermal Amplification (LAMP): An Effective Molecular Point-of-care Technique for the Rapid Diagnosis of Coronavirus SARS-CoV-2. Rev. Med. Virol. 2021, 31, e2215. [Google Scholar] [CrossRef]
- Wong, Y.P.; Othman, S.; Lau, Y.L.; Radu, S.; Chee, H.Y. Loop-Mediated Isothermal Amplification (LAMP): A Versatile Technique for Detection of Micro-Organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, S.; Jung, C.; Bhadra, S.; Ellington, A.D. Phosphorothioated Primers Lead to Loop-Mediated Isothermal Amplification at Low Temperatures. Anal. Chem. 2018, 90, 8290–8294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Typical LAMP Protocol (M0537). Available online: https://international.neb.com/protocols/2014/12/29/typical-lamp-protocol-m0537 (accessed on 10 November 2022).
- Roux, K.H. Optimization and Troubleshooting in PCR. Cold Spring Harb. Protoc. 2009, 4, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerard, G.F.; Collins, S.; Smith, M.D. Excess DNTPs Minimize RNA Hydrolysis during Reverse Transcription. Biotechniques 2002, 33, 984–990. [Google Scholar] [CrossRef]
- Jang, M.J.; Kim, S. Inhibition of Non-Specific Amplification in Loop-Mediated Isothermal Amplification via Tetramethylammonium Chloride. Biochip J. 2022, 16, 326–333. [Google Scholar] [CrossRef]
- Yan, C.; Cui, J.; Huang, L.; Du, B.; Chen, L.; Xue, G.; Li, S.; Zhang, W.; Zhao, L.; Sun, Y.; et al. Rapid and Visual Detection of 2019 Novel Coronavirus (SARS-CoV-2) by a Reverse Transcription Loop-Mediated Isothermal Amplification Assay. Clin. Microbiol. Infect. 2020, 26, 773–779. [Google Scholar] [CrossRef]
- Yu, Y.; Li, R.; Ma, Z.; Han, M.; Zhang, S.; Zhang, M.; Qiu, Y. Development and Evaluation of a Novel Loop Mediated Isothermal Amplification Coupled with TaqMan Probe Assay for Detection of Genetically Modified Organism with NOS Terminator. Food Chem. 2021, 356, 129684. [Google Scholar] [CrossRef]
- Sheikh, N.; Kumar, S.; Sharma, H.K.; Bhagyawant, S.S.; Thavaselvam, D. Development of a Rapid and Sensitive Colorimetric Loop-Mediated Isothermal Amplification Assay: A Novel Technology for the Detection of Coxiella Burnetii From Minimally Processed Clinical Samples. Front. Cell. Infect. Microbiol. 2020, 10, 127. [Google Scholar] [CrossRef]
Conventional LAMP | Low-Temperature LAMP | |
---|---|---|
Buffer | 1× isothermal amplification buffer | 1× isothermal amplification buffer |
Temperature | 65 °C | 37 °C |
Mg2+ | 8 mM | 2.75 mM |
dNTPs | 5.6 mM (1.4 mM each) | 0.1 mM (0.025 mM each) |
Inner primer (FIP/BIP) concentration | 1.6 µM | 400 nM |
Stem lengths (LS and RS) | 21 mers and 20 mers | 14 mers and 10 mers |
Loop lengths (LL and RL) | 42 mers and 40 mers | 15 mers and 15 mers |
SLP length | 175 mers | 78 mers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, D.; Kim, S.; Kim, J.H.; Lee, S.; Kim, D.; Son, J.; Kim, D.; Cha, B.S.; Lee, E.S.; Park, K.S. Low-Temperature Loop-Mediated Isothermal Amplification Operating at Physiological Temperature. Biosensors 2023, 13, 367. https://doi.org/10.3390/bios13030367
Nam D, Kim S, Kim JH, Lee S, Kim D, Son J, Kim D, Cha BS, Lee ES, Park KS. Low-Temperature Loop-Mediated Isothermal Amplification Operating at Physiological Temperature. Biosensors. 2023; 13(3):367. https://doi.org/10.3390/bios13030367
Chicago/Turabian StyleNam, Daehan, Seokjoon Kim, Jung Ho Kim, Seungjin Lee, Daneub Kim, Jinseo Son, Doyeon Kim, Byung Seok Cha, Eun Sung Lee, and Ki Soo Park. 2023. "Low-Temperature Loop-Mediated Isothermal Amplification Operating at Physiological Temperature" Biosensors 13, no. 3: 367. https://doi.org/10.3390/bios13030367
APA StyleNam, D., Kim, S., Kim, J. H., Lee, S., Kim, D., Son, J., Kim, D., Cha, B. S., Lee, E. S., & Park, K. S. (2023). Low-Temperature Loop-Mediated Isothermal Amplification Operating at Physiological Temperature. Biosensors, 13(3), 367. https://doi.org/10.3390/bios13030367