Plasmonic Sensors: A New Frontier in Nanotechnology
Funding
Acknowledgments
Conflicts of Interest
References
- Maier, S.A. Plasmonics; Springer: New York, NY, USA, 2008; ISBN 9780387512938. [Google Scholar]
- Lee, B.; Lee, I.-M.; Kim, S.; Oh, D.-H.; Hesselink, L. Review on subwavelength confinement of light with plasmonics. J. Mod. Opt. 2010, 57, 1479–1497. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 2005, 36, 485–496. [Google Scholar] [CrossRef]
- Geddes, C.D. (Ed.) Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, 1st ed.; John Wiley & Sons: Nashville, TN, USA, 2017; ISBN 9781118027936. [Google Scholar]
- Baffou, G.; Cichos, F.; Quidant, R. Applications and challenges of thermoplasmonics. Nat. Mater. 2020, 19, 946–958. [Google Scholar] [CrossRef]
- Namura, K.; Okai, S.; Kumar, S.; Nakajima, K.; Suzuki, M. Self-oscillation of Locally Heated Water Vapor Microbubbles in Degassed Water. Adv. Mater. Interfaces 2020, 7, 2000483. [Google Scholar] [CrossRef]
- Noguez, C. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment. J. Phys. Chem. C 2007, 111, 3806–3819. [Google Scholar] [CrossRef]
- Liz-Marzán, L.M. Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. In Colloidal Synthesis of Plasmonic Nanometals; Jenny Stanford Publishing: Singapore, 2020; pp. 131–158. ISBN 9780429295188. [Google Scholar]
- Wang, X.; Huang, S.-C.; Hu, S.; Yan, S.; Ren, B. Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271. [Google Scholar] [CrossRef]
- Soler, M.; Lechuga, L.M. Principles, Technologies, and Applications of Plasmonic Biosensors. J. Appl. Phys. 2021, 129, 111102. [Google Scholar] [CrossRef]
- Suvarnaphaet, P.; Pechprasarn, S. Graphene-Based Materials for Biosensors: A Review. Sensors 2017, 17, 2161. [Google Scholar] [CrossRef] [Green Version]
- Seo, D.; Han, E.; Kumar, S.; Jeon, E.; Nam, M.-H.; Jun, H.S.; Seo, S. Field-Portable Leukocyte Classification Device Based on Lens-Free Shadow Imaging Technique. Biosensors 2022, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Fatoyinbo, H.O.; Hughes, M.P. Biosensors. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 329–345. ISBN 9789048197514. [Google Scholar]
- Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical Biosensors Based on ZnO Nanostructures: Advantages and Perspectives. A Review. Sens. Actuators B Chem. 2016, 229, 664–677. [Google Scholar] [CrossRef] [Green Version]
- Coulet, P.R.; Blum, L.J. Biosensor Principles and Applications; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781000715675. [Google Scholar]
- Kumar, S.; Namura, K.; Suzuki, M. Proposal for a gel-based SERS sensor. Proc. SPIE 2019, 10894, 1089414. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Fukuoka, T.; Takahashi, R.; Yoshida, M.; Utsumi, Y.; Yamaguchi, A.; Namura, K.; Suzuki, M. Highly stable and reproducible Au nanorod arrays for near-infrared optofluidic SERS sensor. Mater. Lett. 2021, 286, 129106. [Google Scholar] [CrossRef]
- Park, J.-H.; Cho, Y.-W.; Kim, T.-H. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. Biosensors 2022, 12, 180. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kanagawa, M.; Namura, K.; Fukuoka, T.; Suzuki, M. Multilayer thin-film flake dispersion gel for surface-enhanced Raman spectroscopy. Appl. Nanosci. 2020, 13, 155–163. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, P.; Das, A. Surface-Enhanced Raman Scattering: Introduction and Applications. In Recent Advances in Nanophotonics-Fundamentals and Applications; IntechOpen: London, UK, 2020; pp. 137–160. [Google Scholar]
- Soler, M.; Huertas, C.S.; Lechuga, L.M. Label-Free Plasmonic Biosensors for Point-of-Care Diagnostics: A Review. Expert Rev. Mol. Diagn. 2019, 19, 71–81. [Google Scholar] [CrossRef]
- Gaur, D.S.; Purohit, A.; Mishra, S.K.; Mishra, A.K. An Interplay between Lossy Mode Resonance and Surface Plasmon Resonance and Their Sensing Applications. Biosensors 2022, 12, 721. [Google Scholar] [CrossRef]
- Gosu, R.; Zaheer, S.M. Introduction to Surface Plasmon Resonance. In Methods for Fragments Screening Using Surface Plasmon Resonance; Zaheer, S.M., Gosu, R., Eds.; Springer: Singapore, 2021; pp. 1–4. ISBN 9789811615368. [Google Scholar]
- Chiavaioli, F.; Janner, D. Fiber Optic Sensing with Lossy Mode Resonances: Applications and Perspectives. J. Light. Technol. 2021, 39, 3855–3870. [Google Scholar] [CrossRef]
- Śmietana, M.; Koba, M.; Sezemsky, P.; Szot-Karpińska, K.; Burnat, D.; Stranak, V.; Niedziółka-Jönsson, J.; Bogdanowicz, R. Simultaneous Optical and Electrochemical Label-Free Biosensing with ITO-Coated Lossy-Mode Resonance Sensor. Biosens. Bioelectron. 2020, 154, 112050. [Google Scholar] [CrossRef]
- Prabowo, B.A.; Purwidyantri, A.; Liu, K.-C. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors 2018, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Lee, K.J.; Jo, N.R.; Jo, E.-J.; Shin, Y.-B.; Kim, M.-G. Wafer-Scale LSPR Substrate: Oblique Deposition of Gold on a Patterned Sapphire Substrate. Biosensors 2022, 12, 158. [Google Scholar] [CrossRef]
- Hawkeye, M.M.; Taschuk, M.T.; Brett, M.J. Glancing Angle Deposition of Thin Films: Engineering the Nanoscale; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 9781118847336. [Google Scholar]
- Kumar, S.; Gahlaut, S.K.; Singh, J.P. Sculptured Thin Films: Overcoming the Limitations of Surface-Enhanced Raman Scattering Substrates. Appl. Surf. Sci. Adv. 2022, 12, 100322. [Google Scholar] [CrossRef]
- Namura, K.; Hanai, S.; Kondo, S.; Kumar, S.; Suzuki, M. Gold Micropetals Self-assembled by Shadow-sphere Lithography for Optofluidic Control. Adv. Mater. Interfaces 2022, 9, 2200200. [Google Scholar] [CrossRef]
- Ai, B.; Zhao, Y. Glancing angle deposition meets colloidal lithography: A new evolution in the design of nanostructures. Nanophotonics 2018, 8, 1–26. [Google Scholar] [CrossRef]
- Kumar, S.; Doi, Y.; Namura, K.; Suzuki, M. Plasmonic nanoslit arrays fabricated by serial bideposition: Optical and surface-enhanced Raman scattering study. ACS Appl. Bio Mater. 2020, 3, 3226–3235. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Senapati, S.; Kumar, S.; Gahlaut, S.K.; Singh, J.P. GLAD Based Advanced Nanostructures for Diversified Biosensing Applications: Recent Progress. Biosensors 2022, 12, 1115. [Google Scholar] [CrossRef]
- Baburin, A.S.; Merzlikin, A.M.; Baryshev, A.V.; Ryzhikov, I.A.; Panfilov, Y.V.; Rodionov, I.A. Silver-Based Plasmonics: Golden Material Platform and Application Challenges [Invited]. Opt. Mater. Express 2019, 9, 611. [Google Scholar] [CrossRef]
- Kumar, S.; Namura, K.; Kumaki, D.; Tokito, S.; Suzuki, M. Highly reproducible, large scale inkjet-printed Ag nanoparticles-ink SERS substrate. Results Mater. 2020, 8, 100139. [Google Scholar] [CrossRef]
- Gahlaut, S.K.; Pathak, A.; Gupta, B.D. Recent Advances in Silver Nanostructured Substrates for Plasmonic Sensors. Biosensors 2022, 12, 713. [Google Scholar] [CrossRef]
- Huang, S.; Song, C.; Zhang, G.; Yan, H. Graphene Plasmonics: Physics and Potential Applications. Nanophotonics 2016, 6, 1191–1204. [Google Scholar] [CrossRef]
- Elbanna, A.; Jiang, H.; Fu, Q.; Zhu, J.-F.; Liu, Y.; Zhao, M.; Liu, D.; Lai, S.; Chua, X.W.; Pan, J.; et al. 2D Material Infrared Photonics and Plasmonics. ACS Nano 2023, 17, 4134–4179. [Google Scholar] [CrossRef] [PubMed]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The World of Two-Dimensional Carbides and Nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef]
- Ma, Q.; Ren, G.; Xu, K.; Ou, J.Z. Tunable optical properties of 2D materials and their applications. Adv. Opt. Mater. 2021, 9, 2001313. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Malik, M.; Shahid, W.; Ahmad, W.; Min-Dianey, K.A.A.; Pham, P.V. Plasmonic 2D Materials: Overview, Advancements, Future Prospects and Functional Applications. In 21st Century Nanostructured Materials: Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture; IntechOpen: London, UK, 2022; pp. 47–68. [Google Scholar]
- Iravani, S.; Varma, R.S. Smart MXene Quantum Dot-Based Nanosystems for Biomedical Applications. Nanomaterials 2022, 12, 1200. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Gao, S.; Luo, H.; Wang, L.; Huang, X.; Guo, Z.; Lai, X.; Lin, L.; Li, R.K.Y.; Gao, J. Superhydrophobic and Breathable Smart MXene-Based Textile for Multifunctional Wearable Sensing Electronics. Chem. Eng. J. 2021, 406, 126898. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Kalashgrani, M.Y.; Rahmanian, V.; Gholami, A.; Chiang, W.-H.; Lai, C.W. Biomedical Applications of an Ultra-Sensitive Surface Plasmon Resonance Biosensor Based on Smart MXene Quantum Dots (SMQDs). Biosensors 2022, 12, 743. [Google Scholar] [CrossRef]
- Park, J.A.; Amri, C.; Kwon, Y.; Lee, J.-H.; Lee, T. Recent Advances in DNA Nanotechnology for Plasmonic Biosensor Construction. Biosensors 2022, 12, 418. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, M.; Lee, A.J.; Sharma, R.; Wälti, C.; Actis, P. Rational Design of DNA Nanostructures for Single Molecule Biosensing. Nat. Commun. 2020, 11, 4384. [Google Scholar] [CrossRef]
- Komarova, N.; Kuznetsov, A. Inside the Black Box: What Makes SELEX Better? Molecules 2019, 24, 3598. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C. Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies. Biosensors 2021, 11, 233. [Google Scholar] [CrossRef]
- Lai, H.; Xu, F.; Wang, L. A Review of the Preparation and Application of Magnetic Nanoparticles for Surface-Enhanced Raman Scattering. J. Mater. Sci. 2018, 53, 8677–8698. [Google Scholar] [CrossRef]
- Xu, H.; Aizpurua, J.; Kall, M.; Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 62, 4318–4324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beeram, R.; Vepa, K.R.; Soma, V.R. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. Biosensors 2023, 13, 328. [Google Scholar] [CrossRef]
- King, M.E.; Wang, C.; Fonseca Guzman, M.V.; Ross, M.B. Plasmonics for Environmental Remediation and Pollutant Degradation. Chem Catal. 2022, 2, 1880–1892. [Google Scholar] [CrossRef]
- Lv, S.; Xu, X.; Song, S.; Xu, L.; Liu, L.; Xu, C.; Kuang, H. An Immunochromatographic Assay for the Rapid and Qualitative Detection of Mercury in Rice. Biosensors 2022, 12, 694. [Google Scholar] [CrossRef]
- Dai, P.; Huang, X.; Cui, Y.; Zhu, L. Quantitative SERS Detection of TBBPA in Electronic Plastic Based on Hydrophobic Cu-Ag Chips. Biosensors 2022, 12, 881. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Zhang, D.; Tian, K.; Ni, D.; Guo, F.; Yu, Z.; Wang, P.; Liang, P. Screening and Evaluation of Thiamethoxam Aptamer Based on Pressurized GO-SELEX and Its Sensor Application. Biosensors 2023, 13, 155. [Google Scholar] [CrossRef]
- Sunday, O.E.; Bin, H.; Guanghua, M.; Yao, C.; Zhengjia, Z.; Xian, Q.; Xiangyang, W.; Weiwei, F. Review of the Environmental Occurrence, Analytical Techniques, Degradation and Toxicity of TBBPA and Its Derivatives. Environ. Res. 2022, 206, 112594. [Google Scholar] [CrossRef]
- Kumar, S.; Goel, P.; Singh, D.P.; Singh, J.P. Fabrication of superhydrophobic silver nanorods array substrate using glancing angle deposition. AIP Conf. Proc. 2014, 1591, 872. [Google Scholar] [CrossRef]
- Ahmad, D.; van den Boogaert, I.; Miller, J.; Presswell, R.; Jouhara, H. Hydrophilic and Hydrophobic Materials and Their Applications. Energy Sources Recovery Util. Environ. Eff. 2018, 40, 2686–2725. [Google Scholar] [CrossRef]
- Yadav, S.; Senapati, S.; Desai, D.; Gahlaut, S.; Kulkarni, S.; Singh, J.P. Portable and sensitive Ag nanorods based SERS platform for rapid HIV-1 detection and tropism determination. Colloids Surf. B Biointerfaces 2021, 198, 111477. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Goel, P.; Singh, J.P. Flexible and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits. Sens. Actuators B Chem. 2017, 241, 577–583. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Rahmanian, V.; Kalashgrani, M.Y.; Gholami, A.; Omidifar, N.; Chiang, W.-H. Highly Sensitive Flexible SERS-Based Sensing Platform for Detection of COVID-19. Biosensors 2022, 12, 466. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Seo, S. Plasmonic Sensors: A New Frontier in Nanotechnology. Biosensors 2023, 13, 385. https://doi.org/10.3390/bios13030385
Kumar S, Seo S. Plasmonic Sensors: A New Frontier in Nanotechnology. Biosensors. 2023; 13(3):385. https://doi.org/10.3390/bios13030385
Chicago/Turabian StyleKumar, Samir, and Sungkyu Seo. 2023. "Plasmonic Sensors: A New Frontier in Nanotechnology" Biosensors 13, no. 3: 385. https://doi.org/10.3390/bios13030385
APA StyleKumar, S., & Seo, S. (2023). Plasmonic Sensors: A New Frontier in Nanotechnology. Biosensors, 13(3), 385. https://doi.org/10.3390/bios13030385