HPTLC-Bioluminescent Bioautography Screening of Herbal Teas for Adulteration with Hypolipidemic Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Preparation of Bioluminescent Suspension
2.3. Preparation of Standard Solution
2.4. Preparation of Tea Samples
2.5. HPTLC Steps
2.6. Documentation and Analysis of the Bioluminescent Image
3. Result and Discussion
3.1. Optimization of HPTLC Layer Material
3.2. Optimization of Bioluminescent Bioautography
3.3. Optimization of Chromatographic Conditions
3.4. Precision and Sensitivity
3.5. Linearity and Accuracy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lan, T.; Li, Q.; Chang, M.; Yin, C.; Zhu, D.; Wu, Z.; Li, X.; Zhang, W.; Yue, B.; Shi, J.; et al. Lei-gong-gen formula granule attenuates hyperlipidemia in rats via cGMP-PKG signaling pathway. J. Ethnopharmacol. 2020, 260, 112989. [Google Scholar] [CrossRef]
- Xie, W.; Zhao, Y.; Du, L. Emerging approaches of traditional Chinese medicine formulas for the treatment of hyperlipidemia. J. Ethnopharmacol. 2012, 140, 345–367. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.-M.; Shih, W.-T.; Yang, Y.-H.; Chen, P.-C.; Chu, Y.-H. Use of traditional Chinese medicine in patients with hyperlipidemia: A population-based study in Taiwan. J. Ethnopharmacol. 2015, 168, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.-J.; Li, T.-M.; Cheng, C.-F.; Wu, Y.-C.; Lai, C.-H.; Ho, T.-J.; Liu, X.; Tsang, H.; Lin, T.-H.; Liao, C.-C.; et al. Effects of Chinese herbal medicine on hyperlipidemia and the risk of cardiovascular disease in HIV-infected patients in Taiwan. J. Ethnopharmacol. 2018, 219, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Lou, Y.-Y.; Wang, Y.-S.; Huang, Y.-P.; Zhang, J.; Yin, Z.-Q.; Pan, K. New dammarane-type glycosides from Gynostemma pentaphyllum and their lipid-lowering activity. Bioorg. Chem. 2021, 111, 104843. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; You, J.S.; Zhao, X.; Park, J.Y.; Kim, S.H.; Chang, K.J. Antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in rats fed a high fat diet. J. Biomed. Sci. 2010, 17 (Suppl. S1), S42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, T.T.K.; Theocharis, G.; Reich, E. Simultaneous Detection of Three Phosphodiesterase Type 5 Inhibitors and Eight of Their Analogs in Lifestyle Products and Screening for Adulterants by High-Performance Thin-Layer Chromatography. J. AOAC Inter. 2015, 98, 1226–1233. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.L.; Liang, Z.; Chen, H.; Zhao, Z. Ingredient authentication of commercial Xihuangcao herbal tea by a microscopic technique combined with UPLC-ESI-QTOF-MS/MS. Anal. Method 2015, 7, 4257–4268. [Google Scholar] [CrossRef]
- Ichim, M.C.; Booker, A. Chemical Authentication of Botanical Ingredients: A Review of Commercial Herbal Products. Front. Pharmacol. 2021, 12, 666850. [Google Scholar] [CrossRef]
- Xu, L.; Liu, S. Forecasting structure of natural products through color formation process by thin layer chromatography. Food Chem. 2021, 334, 127496. [Google Scholar] [CrossRef]
- Tang, C.; Guo, T.; Zhang, Z.; Yang, P.; Song, H. Rapid visualized characterization of phenolic taste compounds in tea extract by high-performance thin-layer chromatography coupled to desorption electrospray ionization mass spectrometry. Food Chem. 2021, 355, 129555. [Google Scholar] [CrossRef] [PubMed]
- Oellig, C.; Link, K.; Schwack, W. Characterization of E 472 food emulsifiers–determination of bound and free fruit acids, free glycerol and ash content. J. Chromatogr. A 2020, 1619, 460946. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Shu, T.; Liu, S. Simplified Quantification of Representative Bioactives in Food Through TLC Image Analysis. Food Anal. Method 2019, 12, 2886–2894. [Google Scholar] [CrossRef]
- Hong, H.-J.; Yang, Q.; Liu, Q.; Leong, F.; Chen, X.-J. Chemical Comparison of Monk Fruit Products Processed by Different Drying Methods Using High-Performance Thin-Layer Chromatography Combined With Chemometric Analysis. Front. Nutr. 2022, 9, 887992. [Google Scholar] [PubMed]
- Chen, Y.; Chen, Q.; Wei, X. Separable surface enhanced Raman spectroscopy sensor platformed by HPTLC for facile screening of malachite green in fish. Microchem. J. 2021, 170, 106694. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, C.; Hellmann, B.; Xu, X. HPTLC-Densitometry Determination of Riboflavin Fortified in Rice Noodle: Confirmed by SERS-Fingerprint. Food Anal. Method 2020, 13, 718–725. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Y.; Chen, Y.; Xu, X.; Jin, Z.; Ding, Y.; Yang, N.; Wu, F. Tuneable surface enhanced Raman spectroscopy hyphenated to chemically derivatized thin-layer chromatography plates for screening histamine in fish. Food Chem. 2017, 230, 547–552. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Ramenskaya, G.; Kustrin, E.; Ortakand, D.B.; Morton, D.W. A new integrated HPTLC–ATR/FTIR approach in marine algae bioprofiling. J. Pharm. Biomed. Anal. 2020, 189, 113488. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Morton, D.W. The Power of HPTLC-ATR-FTIR Hyphenation in Bioactivity Analysis of Plant Extracts. Appl. Sci. 2020, 10, 8232. [Google Scholar]
- Sumudu Chandana, N.G.A.S.; Morlock, G.E. Eight different bioactivity profiles of 40 cinnamons by multi-imaging planar chromatography hyphenated with effect–directed assays and high-resolution mass spectrometry. Food Chem. 2021, 357, 129135. [Google Scholar] [CrossRef]
- Klingelhöfer, I.; Hockamp, N.; Morlock, G.E. Non-targeted detection and differentiation of agonists versus antagonists, directly in bioprofiles of everyday products. Anal. Chim. Acta 2020, 1125, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Ristivojević, P.M.; Morlock, G.E. Effect-directed classification of biological, biochemical and chemical profiles of 50 German beers. Food Chem. 2018, 260, 344–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Huang, C.; Hellmann, B.; Jin, Z.; Xu, X.; Xiao, G. A new HPTLC platformed luminescent biosensor system for facile screening of captan residue in fruits. Food Chem. 2020, 309, 125691. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, C.; Jin, Z.; Xu, X.; Cai, Y.; Bai, Y. HPTLC-bioautography/SERS screening nifedipine adulteration in food supplement based on Ginkgo biloba. Microchem. J. 2020, 154, 104647. [Google Scholar] [CrossRef]
- Chen, Y.; Schwack, W. High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry. J. Chromatogr. A 2014, 1356, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Morlock, G.E. Layer-Induced Sensitivity Enhancement in Planar Chromatography–Bioluminescence–Mass Spectrometry: Application to Alkaloids. Chromatographia 2016, 79, 89–96. [Google Scholar] [CrossRef]
- Baumgartner, V.; Hohl, C.; Schwack, W. Rolling—A new application technique for luminescent bacteria on high-performance thin-layer chromatography plates. J. Chromatogr. A 2011, 1218, 2692–2699. [Google Scholar] [CrossRef]
Group 1 | ||||||
---|---|---|---|---|---|---|
Layer materials | NH2-Silica gel F254 | Silica gel F254 | Silica gel | |||
Exposure time (min) | 0 | 8 | 0 | 8 | 0 | 8 |
Image | ||||||
Usability | NO | YES | YES | |||
Group 2 | ||||||
Layer materials | Neutral aluminum oxide Al2O3 | Acidified aluminum oxide Al2O3 | Diatomite SiO2 | |||
Exposure time (min) | 0 | 8 | 0 | 8 | 0 | 8 |
Image | ||||||
Usability | NO | NO | NO |
Analyte | Spiked Levels (mg/kg) | Recovery Rate (%) * | ||||
---|---|---|---|---|---|---|
LL | AC | GB | GS | CT | ||
BZF | 5 | 81 ± 7 | 79 ± 6 | 86 ± 8 | 80 ± 5 | 85 ± 5 |
10 | 90 ± 8 | 89 ± 9 | 85 ± 7 | 78 ± 6 | 71 ± 4 | |
20 | 82 ± 8 | 84 ± 5 | 88 ± 8 | 72 ± 6 | 78 ± 7 | |
CPF | 5 | 74 ± 7 | 78 ± 7 | 83 ± 5 | 83 ± 7 | 85 ± 6 |
10 | 89 ± 7 | 90 ± 9 | 83 ± 6 | 87 ± 6 | 81 ± 7 | |
20 | 78 ± 3 | 83 ± 8 | 91 ± 8 | 85 ± 7 | 90 ± 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xi, X.; Wang, L.; Chen, Y. HPTLC-Bioluminescent Bioautography Screening of Herbal Teas for Adulteration with Hypolipidemic Drugs. Biosensors 2023, 13, 392. https://doi.org/10.3390/bios13030392
Wang Y, Xi X, Wang L, Chen Y. HPTLC-Bioluminescent Bioautography Screening of Herbal Teas for Adulteration with Hypolipidemic Drugs. Biosensors. 2023; 13(3):392. https://doi.org/10.3390/bios13030392
Chicago/Turabian StyleWang, Yuting, Xingjun Xi, Liao Wang, and Yisheng Chen. 2023. "HPTLC-Bioluminescent Bioautography Screening of Herbal Teas for Adulteration with Hypolipidemic Drugs" Biosensors 13, no. 3: 392. https://doi.org/10.3390/bios13030392
APA StyleWang, Y., Xi, X., Wang, L., & Chen, Y. (2023). HPTLC-Bioluminescent Bioautography Screening of Herbal Teas for Adulteration with Hypolipidemic Drugs. Biosensors, 13(3), 392. https://doi.org/10.3390/bios13030392