Functionalization of a Fully Integrated Electrophotonic Silicon Circuit for Biotin Sensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Si3N4 Surface Characterization
3.2. Raman Spectroscopy
3.3. Photoluminescence (PL)
3.4. Eph Circuit Measurements
4. Discussion
4.1. Functionalization of the EPh Circuit
4.2. The EPh Sensor
4.3. Photocurrent
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowery, A.J.; Zhuang, L. Electro-photonics: An emerging field for photonic integrated circuits. In Proceedings of the Smart Photonic and Optoelectronic Integrated Circuits XX, San Francisco, CA, USA, 22 February 2018. [Google Scholar] [CrossRef]
- Ochoa, M.; Algorri, J.F.; Roldan-Varona, P.; Rodriguez-Cobo, L.; Lopez-Higuera, J.M. Recent advances in biomedical photonic sensors: A focus on optical-fibre-based sensing. Sensors 2021, 21, 6469. [Google Scholar] [CrossRef]
- Lin, Y.; Yong, Z.; Luo, X.; Azadeh, S.S.; Mikkelsen, J.; Sharma, A.; Chen, H.; Mak, J.C.C.; Lo, P.G.Q.; Sacher, W.D.; et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform. Nat. Commun. 2022, 13, 6362. [Google Scholar] [CrossRef]
- González-Fernández, A.A.; Juvert, J.; Aceves-Mijares, M.; Domínguez, C. Monolithic Integration of a Silicon-Based Photonic Transceiver in a CMOS Process. IEEE Photonics J. 2016, 8, 7900213. [Google Scholar] [CrossRef]
- Chen, Y.T.; Lee, Y.C.; Lai, Y.H.; Lim, J.C.; Huang, N.T.; Lin, C.T.; Huang, J.J. Review of Integrated Optical Biosensors for Point-of-Care Applications. Biosensors 2020, 10, 209. [Google Scholar] [CrossRef]
- González-Fernández, A.A.; Hernández-Montero, W.W.; Hernández-Betanzos, J.; Domínguez, C.; Aceves-Mijares, M. Refractive index sensing using a Si-based light source embedded in a fully integrated monolithic transceiver. AIP Adv. 2019, 9, 125215. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Lozano, O.; García-Aparicio, P.; Raduly, L.Z.; Estévez, M.C.; Berindan-Neagoe, I.; Ferracin, M.; Lechuga, L.M. One-Step and Real-Time Detection of microRNA-21 in Human Samples for Lung Cancer Biosensing Diagnosis. Anal. Chem. 2022, 94, 14659–14665. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Soenksen, L.R.; Donghia, N.M.; Angenent-Mari, N.M.; de Puig, H.; Huang, A.; Lee, R.; Slomovic, S.; Galbersanini, T.; Lansberry, G.; et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 2021, 39, 1366–1374. [Google Scholar] [CrossRef]
- Zinoviev, K.E.; González-Guerrero, A.B.; Domínguez, C.; Lechuga, L.M. Integrated bimodal waveguide interferometric biosensor for label-free analysis. J. Light. Technol. 2011, 29, 1926–1930. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Kim, K.W.; Gu, Z.; Kee, J.S.; Park, M.K. Single-channel Mach-Zehnder interferometric biochemical sensor based on two-lateral-mode spiral waveguide. Opt. Express 2014, 22, 27910. [Google Scholar] [CrossRef]
- González-Fernández, A.A.; Aceves-Mijares, M.; Pérez-Díaz, O.; Hernández-Betanzos, J.; Domínguez, C. Embedded silicon nanoparticles as enabler of a novel cmos-compatible fully integrated silicon photonics platform. Crystals 2021, 11, 630. [Google Scholar] [CrossRef]
- Kohanski, R.A. Biotinylation of Proteins, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 1. [Google Scholar] [CrossRef]
- To, T.D.; Nguyen, A.T.; Phan, K.N.T.; Truong, A.T.T.; Doan, T.C.D.; Dang, C.M. Modification of silicon nitride surfaces with GOPES and APTES for antibody immobilization: Computational and experimental studies. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 45006. [Google Scholar] [CrossRef]
- Aceves-Mijares, M.; González-Fernández, A.A.; López-Estopier, R.; Luna-López, A.; Berman-Mendoza, D.; Morales, A.; Falcony, C.; Domíngez, C.; Murphy-Arteaga, R. On the origin of light emission in silicon rich oxide obtained by low-pressure chemical vapor deposition. J. Nanomater. 2012, 2012, 890701. [Google Scholar] [CrossRef] [Green Version]
- Cabañas-Tay, S.A.; Palacios-Huerta, L.; Aceves- Mijares, M.; Coyopol, A.; Pérez-García, S.A.; Licea- Jiménez, L.; Domínguez, C.; Morales-Sánchez, A. Luminescent Devices Based on Silicon-Rich Dielectric Materials. In Luminescence—An Outlook on the Phenomena and Their Applications; InTech: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Diao, J.; Ren, D.; Engstrom, J.R.; Lee, K.H. A surface modification strategy on silicon nitride for developing biosensors. Anal. Biochem. 2005, 343, 322–328. [Google Scholar] [CrossRef]
- Márquez, J.; Cházaro-Ruiz, L.F.; Zimányi, L.; Palestino, G. Immobilization strategies and electrochemical evaluation of porous silicon based cytochrome c electrode. Electrochim. Acta 2014, 140, 550–556. [Google Scholar] [CrossRef]
- Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E.J.R.; Schroën, K.; White, R.G.; Yang, L.; Linford, M.R.; Zuilhof, H. Covalent biofunctionalization of silicon nitride surfaces. Langmuir 2007, 23, 6233–6244. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.H.; Davydov, A.V.; Motayed, A.; Sundaresan, S.G.; Bocchini, P.; Richter, L.J.; Stan, G.; Steffens, K.; Zangmeister, R.; Schreifels, J.A.; et al. Immobilization of streptavidin on 4H-SiC for biosensor development. Appl. Surf. Sci. 2012, 258, 6056–6063. [Google Scholar] [CrossRef]
- Bartl, J.D.; Gremmo, S.; Stutzmann, M.; Tornow, M.; Cattani-Scholz, A. Modification of silicon nitride with oligo(ethylene glycol)-terminated organophosphonate monolayers. Surf. Sci. 2020, 697, 121599. [Google Scholar] [CrossRef]
- Kossek, S.; Padeste, C.; Tiefenauer, L. Immobilization of Streptavidin for Immunosensors on Nanostructured Surfaces. J. Mol. Recognit. 1996, 9, 485–487. [Google Scholar] [CrossRef]
- Qiao, W.; Zhang, T.; Yen, T.; Ku, T.H.; Song, J.; Lian, I.; Lo, Y.H. Oil-encapsulated nanodroplet array for bio-molecular detection. Ann. Biomed. Eng. 2014, 42, 1932–1941. [Google Scholar] [CrossRef] [PubMed]
- De Vos, K.; Bartolozzi, I.; Schacht, E.; Bienstman, P.; Baets, R. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 2007, 15, 7610. [Google Scholar] [CrossRef]
- Jenie, S.N.A.; Du, Z.; McInnes, S.J.P.; Ung, P.; Graham, B.; Plush, S.; Voelcker, N.H. Biomolecule detection in porous silicon based microcavities via europium luminescence enhancement. J. Mater. Chem. B 2014, 2, 7694–7703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koji, F.; Nozomi, I.; Ayako, N.; Yuichi, K.; Yasuchika, H.; Yasutaka, M. Photolithographic fabrication of a micro-electrode surface on a carbon steel sheet for local hydrogen permeation measurements. ISIJ Int. 2021, 61, 1112–1119. [Google Scholar] [CrossRef]
- Hiraoui, M.; Guendouz, M.; Lorrain, N.; Moadhen, A.; Haji, L.; Oueslati, M. Spectroscopy studies of functionalized oxidized porous silicon surface for biosensing applications. Mater. Chem. Phys. 2011, 128, 151–156. [Google Scholar] [CrossRef]
- Matei, A.; Puscas, C.; Patrascu, I.; Lehene, M.; Ziebro, J.; Scurtu, F.; Baia, M.; Porumb, D.; Totos, R.; Silaghi-Dumitrescu, R. On the stability of glutaraldehyde in biocide compositions. Int. J. Mol. Sci. 2020, 21, 3372. [Google Scholar] [CrossRef] [PubMed]
- Carrier, S.L.; Kownacki, C.M.; Schultz, Z.D. Protein-ligand binding investigated by a single nanoparticle TERS approach. Chem. Commun. 2011, 47, 2065–2067. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, A.A.; Juvert, J.; Aceves-Mijares, M.; Domínguez, C. Luminescence from si-implanted SiO 2 -Si 3 N 4 Nano Bi-layers for electrophotonic integrated Si light sources. Sensors 2019, 19, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rea, I.; Terracciano, M.; Chandrasekaran, S.; Voelcker, N.H.; Dardano, P.; Martucci, N.M.; Lamberti, A.; De Stefano, L. Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing. Nanoscale Res. Lett. 2016, 11, 405. [Google Scholar] [CrossRef] [Green Version]
- Zuo, P.; Zhang, J.; Zhou, Y.; Xie, N.; Xiao, D. Spontaneous Formation of Fluorescent Carbon Nanoparticles in Glutaraldehyde Solution and Their Fluorescence Mechanism. J. Fluoresc. 2021, 31, 509–516. [Google Scholar] [CrossRef]
- Keshari, A.K.; Parashar, V.; Pandey, A.C. Optical stability and photoluminescence enhancement of biotin assisted ZnS:Mn2+ nanoparticles. AIP Conf. Proc. 2009, 1147, 187–193. [Google Scholar] [CrossRef]
- Waner, M.J.; Hiznay, J.M.; Mustovich, A.T.; Patton, W.; Ponyik, C.; Mascotti, D.P. Streptavidin cooperative allosterism upon binding biotin observed by differential changes in intrinsic fluorescence. Biochem. Biophys. Rep. 2019, 17, 127–131. [Google Scholar] [CrossRef]
- Goel, A.; Keshari, A.K.; Kumar, M. Synthesis of biotin caped Mn2+ activated ZnS quantum dots with their structural stability and modulation of opto-electronic properties. J. Physics Conf. Ser. 2020, 1531, 012012. [Google Scholar] [CrossRef]
- Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Díaz, O.; González-Fernández, A.A.; Aceves-Mijares, M. Study of silicon rich oxide light emitter capacitors using textured substrates by metal assisted chemical etching. J. Lumin. 2022, 250, 119054. [Google Scholar] [CrossRef]
- Himmelhaus, M.; Krishnamoorthy, S.; Francois, A. Optical sensors based on whispering gallery modes in fluorescent microbeads: Response to specific interactions. Sensors 2010, 10, 6257–6274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Diaz, O.; Estrada-Wiese, D.; Aceves-Mijares, M.; González-Fernández, A.A. Functionalization of a Fully Integrated Electrophotonic Silicon Circuit for Biotin Sensing. Biosensors 2023, 13, 399. https://doi.org/10.3390/bios13030399
Pérez-Diaz O, Estrada-Wiese D, Aceves-Mijares M, González-Fernández AA. Functionalization of a Fully Integrated Electrophotonic Silicon Circuit for Biotin Sensing. Biosensors. 2023; 13(3):399. https://doi.org/10.3390/bios13030399
Chicago/Turabian StylePérez-Diaz, Oscar, Denise Estrada-Wiese, Mariano Aceves-Mijares, and Alfredo A. González-Fernández. 2023. "Functionalization of a Fully Integrated Electrophotonic Silicon Circuit for Biotin Sensing" Biosensors 13, no. 3: 399. https://doi.org/10.3390/bios13030399
APA StylePérez-Diaz, O., Estrada-Wiese, D., Aceves-Mijares, M., & González-Fernández, A. A. (2023). Functionalization of a Fully Integrated Electrophotonic Silicon Circuit for Biotin Sensing. Biosensors, 13(3), 399. https://doi.org/10.3390/bios13030399