Clinically Deployable Bioelectronic Sensing Platform for Ultrasensitive Detection of Transferrin in Serum Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Serum Sample Collection
2.3. Synthesis of Graphene Oxide
2.4. Characterization Techniques
2.5. Fabrication of rGO/ITO Electrode
2.6. Fabrication of Anti-Tf/rGO/ITO Immunosensor
2.7. Transferrin Detection Using Anti-Tf/rGO/ITO Electrode
2.8. Specificity Studies on Anti-Tf/rGO/ITO Immunosensor
2.9. Estimation of Transferrin Levels through ELISA
2.10. Validation of Serum Transferrin Levels through Autobioanalyzer
3. Results and Discussion
3.1. Physical Characterization of GO
3.2. Electrochemical Characterization of the Fabricated Immunosensor
3.3. Detection of Tf Antigen Using Fabricated Immunosensor
3.4. Specificity and Stability of the Immunosensor
3.5. Validation of Immunosensor Results Using ELISA and Autobioanalyzer
3.6. Validating the Immunosensor with Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandra, P. Electrochemical Nanobiosensors for Cancer Diagnosis. J. Anal. Bioanal. Tech. 2015, 6, e119. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Ayob, A.Z.; Ramasamy, T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 2018, 25, 20. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Chen, H.; Zhao, R.; Zhu, M.; Nie, G. Nanomedicine targets iron metabolism for cancer therapy. Cancer Sci. 2022, 113, 828–837. [Google Scholar] [CrossRef]
- Hung, N.; Shen, C.-C.; Hu, Y.-W.; Hu, L.-Y.; Yeh, C.-M.; Teng, C.-J.; Kuan, A.-S.; Chen, S.-C.; Chen, T.-J.; Liu, C.-J. Risk of Cancer in Patients with Iron Deficiency Anemia: A Nationwide Population-Based Study. PLoS ONE 2015, 10, e0119647. [Google Scholar] [CrossRef] [Green Version]
- Pandrangi, S.L.; Chittineedi, P.; Chalumuri, S.S.; Meena, A.S.; Neira Mosquera, J.A.; Sánchez Llaguno, S.N.; Pamuru, R.R.; Mohiddin, G.J.; Mohammad, A. Role of Intracellular Iron in Switching Apoptosis to Ferroptosis to Target Therapy-Resistant Cancer Stem Cells. Molecules 2022, 27, 3011. [Google Scholar] [CrossRef]
- Guo, R.; Gao, J.; Hui, L.; Li, Y.; Liu, J.; Fu, Y.; Shi, L.; Wang, Y.; Liu, B. An Improved Method for Quick Quantification of Unsaturated Transferrin. Biosensors 2022, 12, 708. [Google Scholar] [CrossRef]
- Pandrangi, S.L.; Chittineedi, P.; Chikati, R.; Lingareddy, J.R.; Nagoor, M.; Ponnada, S.K. Role of Dietary Iron Revisited: In Metabolism, Ferroptosis and Pathophysiology of Cancer. Am. J. Cancer Res. 2022, 12, 974–985. [Google Scholar] [PubMed]
- De Almeida, S.V.; Cancino-Bernardi, J.; De Andrade, J.K.; Felsner, M.L.; Zucolotto, V.; Galli, A. Cancer immunosensor based on apo and holo transferrin binding. Microchim. Acta 2020, 187, 438. [Google Scholar] [CrossRef] [PubMed]
- Sawayama, H.; Miyamoto, Y.; Hiyoshi, Y.; Shimokawa, M.; Kato, R.; Akiyama, T.; Sakamoto, Y.; Daitoku, N.; Yoshida, N.; Baba, H. Preoperative transferrin level is a novel prognostic marker for colorectal cancer. Ann. Gastroenterol. Surg. 2021, 5, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.A.; Bokemeyer, A.; Cordes, F.; Fuhrmann, V.; Schmidt, H.; Hüsing-Kabar, A.; Kabar, I. Serum levels of ferritin and transferrin serve as prognostic factors for mortality and survival in patients with end-stage liver disease: A propensity score-matched cohort study. United Eur. Gastroenterol. J. 2020, 8, 332–339. [Google Scholar] [CrossRef]
- Brown, R.A.M.; Richardson, K.L.; Kabir, T.D.; Trinder, D.; Ganss, R.; Leedman, P.J. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front. Oncol. 2020, 10, 476. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sun, S.; Huang, Y.; Wang, R.; Xu, J.; Liu, X.; Qian, K. Label-Free Detection of Transferrin Receptor by a Designed Ligand-Protein Sensor. Chem.–Asian J. 2020, 15, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Ellervik, C.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Risk of cancer by transferrin saturation levels and haemochromatosis genotype: Population-based study and meta-analysis. J. Intern. Med. 2012, 271, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, Y.; Song, D.; Zhang, Q.; Tian, Y.; Zhang, H. Enhanced optical immuosensor based on surface plasmon resonance for determination of transferrin. Talanta 2006, 68, 1026–1031. [Google Scholar] [CrossRef]
- Divya; Dkhar, D.S.; Kumari, R.; Mahapatra, S.; Kumar, R.; Chandra, P. Ultrasensitive Aptasensors for the Detection of Viruses Based on Opto-Electrochemical Readout Systems. Biosensors 2022, 12, 81. [Google Scholar] [CrossRef]
- Radić, J.; Buljac, M.; Genorio, B.; Gričar, E.; Kolar, M. A Novel Reduced Graphene Oxide Modified Carbon Paste Electrode for Potentiometric Determination of Trihexyphenidyl Hydrochloride in Pharmaceutical and Biological Matrices. Sensors 2021, 21, 2955. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Dkhar, D.S.; Mahapatra, S.; Divya; Kumar, R.; Chandra, P. Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem. J. 2022, 180, 107615. [Google Scholar] [CrossRef]
- Wignarajah, S.; Chianella, I.; Tothill, I.E. Development of Electrochemical Immunosensors for HER-1 and HER-2 Analysis in Serum for Breast Cancer Patients. Biosensors 2023, 13, 355. [Google Scholar] [CrossRef]
- Akhtar, M.H.; Hussain, K.K.; Gurudatt, N.G.; Chandra, P.; Shim, Y.-B. Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens. Bioelectron. 2018, 116, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Mehrannia, L.; Khalilzadeh, B.; Rahbarghazi, R.; Milani, M.; Saydan Kanberoglu, G.; Yousefi, H.; Erk, N. Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection. Biosensors 2023, 13, 216. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.S.; Silva, M.K.L.; Cesarino, I. Reduced Graphene Oxide-Based Impedimetric Immunosensor for Detection of Enterotoxin A in Milk Samples. Materials 2020, 13, 1751. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, D.; Zhang, G.; Wang, X.; Zhou, J.; Chen, Y.; You, X.; Liang, C.; Qi, Y.; Li, Y.; et al. An Electrochemical Immunosensor Based on SPA and rGO-PEI-Ag-Nf for the Detection of Arsanilic Acid. Molecules 2022, 27, 172. [Google Scholar] [CrossRef] [PubMed]
- Braz, B.A.; Hospinal-Santiani, M.; Martins, G.; Pinto, C.S.; Zarbin, A.J.G.; Beirão, B.C.B.; Thomaz-Soccol, V.; Bergamini, M.F.; Marcolino-Junior, L.H.; Soccol, C.R. Graphene-Binding Peptide in Fusion with SARS-CoV-2 Antigen for Electrochemical Immunosensor Construction. Biosensors 2022, 12, 885. [Google Scholar] [CrossRef] [PubMed]
- Ketmen, S.; Er Zeybekler, S.; Gelen, S.S.; Odaci, D. Graphene Oxide-Magnetic Nanoparticles Loaded Polystyrene-Polydopamine Electrospun Nanofibers Based Nanocomposites for Immunosensing Application of C-Reactive Protein. Biosensors 2022, 12, 1175. [Google Scholar] [CrossRef] [PubMed]
- Tajik, S.; Askari, M.B.; Ahmadi, S.A.; Nejad, F.G.; Dourandish, Z.; Razavi, R.; Beitollahi, H.; Di Bartolomeo, A. Electrochemical Sensor Based on ZnFe2O4/RGO Nanocomposite for Ultrasensitive Detection of Hydrazine in Real Samples. Nanomaterials 2022, 12, 491. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Gong, G.; Jiang, Y.; Qin, J.; Mei, Y.; Han, J. Electrochemical Immunosensor Modified with Nitrogen-Doped Reduced Graphene Oxide@Carboxylated Multi-Walled Carbon Nanotubes/Chitosan@Gold Nanoparticles for CA125 Detection. Chemosensors 2022, 10, 272. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Xu, B.; Zhang, H.; Gao, Y.; Zhang, H.; Song, D. A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod–antibody conjugates for determination of transferrin. Biosens. Bioelectron. 2013, 45, 230–236. [Google Scholar] [CrossRef]
- Matysiak-Brynda, E.; Bystrzejewski, M.; Wieckowska, A.; Grudzinski, I.P.; Nowicka, A.M. Novel ultrasensitive immunosensor based on magnetic particles for direct detection of transferrin in blood. Sens. Actuators B Chem. 2017, 249, 105–113. [Google Scholar] [CrossRef]
- Kong, W.; Zhou, H.; Ouyang, H.; Li, Z.; Fu, Z. A disposable label-free electrochemiluminescent immunosensor for transferrin detection based on a luminol-reduced gold nanoparticle-modified screen-printed carbon electrode. Anal. Methods 2014, 6, 2959–2964. [Google Scholar] [CrossRef]
- Miao, Y.; Sun, X.; Lv, J.; Yan, G. Phosphorescent Mesoporous Surface Imprinting Microspheres: Preparation and Application for Transferrin Recognition from Biological Fluids. ACS Appl. Mater. Interfaces 2019, 11, 2264–2272. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, G.; Wang, Z.; Ma, J.; Jia, Q. Design and synthesis of Fe3O4@Au@cyclodextrin-molecularly imprinted polymers labeled with SERS nanotags for ultrasensitive detection of transferrin. Sens. Actuators B Chem. 2022, 361, 131669. [Google Scholar] [CrossRef]
- Cen, S.-Y.; Ge, X.-Y.; Chen, Y.; Wang, A.-J.; Feng, J.-J. Label-free electrochemical immunosensor for ultrasensitive determination of cardiac troponin I based on porous fluffy-like AuPtPd trimetallic alloyed nanodendrites. Microchem. J. 2021, 169, 106568. [Google Scholar] [CrossRef]
- Saini, A.; Panwar, D.; Panesar, P.S.; Chandra, P. Potential of Nanotechnology in Food Analysis and Quality Improvement. In Nanosensing and Bioanalytical Technologies in Food Quality Control; Springer: Singapore, 2022. [Google Scholar]
- Rasitanon, N.; Veenuttranon, K.; Lwin, H.T.; Kaewpradub, K.; Phairatana, T.; Jeerapan, I. Redox-Mediated Gold Nanoparticles with Glucose Oxidase and Egg White Proteins for Printed Biosensors and Biofuel Cells. Int. J. Mol. Sci. 2023, 24, 4657. [Google Scholar] [CrossRef] [PubMed]
- Mahato, K.; Prasad, A.; Chandra, P.K.M.A.P. Nanobiosensors: Next Generation Point-of-Care Biomedical Devices for Personalized Diagnosis. J. Anal. Bioanal. Tech. 2016, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Purohit, B.; Mahato, K.; Chandra, P. CHAPTER 11: Advance Engineered Nanomaterials in Point-of-Care Immunosensing for Biomedical Diagnostics. In RSC Detection Science; Royal Society of Chemistry: Cambridge, UK, 2019; p. 367. ISBN 978-1-78801-616-2. [Google Scholar]
- Chandra, P.; Prakash, R. Nanobiomaterial Engineering: Concepts and Their Applications in Biomedicine and Diagnostics; Springer: Singapore, 2020; ISBN 9789813298408. [Google Scholar]
- Saxena, V.; Chandra, P.; Pandey, L.M. Design and characterization of novel Al-doped ZnO nanoassembly as an effective nanoantibiotic. Appl. Nanosci. 2018, 8, 1925–1941. [Google Scholar] [CrossRef]
- Mohammadpour-Haratbar, A.; Boraei, S.B.A.; Zare, Y.; Rhee, K.Y.; Park, S.-J. Graphene-Based Electrochemical Biosensors for Breast Cancer Detection. Biosensors 2023, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Zheng, S.; Xie, J.; Zhou, R.; Chen, Y.; Gao, W. A sensitive electrochemiluminescence immunosensor for the detection of CA15-3 based on CeO2/Pt/rGO as a novel co-reaction accelerator. Talanta 2023, 253, 123912. [Google Scholar] [CrossRef]
- Kudur Jayaprakash, G.; Swamy, B.E.K.; Flores-Moreno, R.; Pineda-Urbina, K. Theoretical and Cyclic Voltammetric Analysis of Asparagine and Glutamine Electrocatalytic Activities for Dopamine Sensing Applications. Catalysts 2023, 13, 100. [Google Scholar] [CrossRef]
- Reddy Gajjala, R.K.; Gade, P.S.; Bhatt, P.; Vishwakarma, N.; Singh, S. Enzyme decorated dendritic bimetallic nanocomposite biosensor for detection of HCHO. Talanta 2022, 238, 123054. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Wang, Y.; Zhu, R.; Chen, Y.; Liu, X.; Li, M.; Yang, L.; Wang, Y.; Wang, D. Fiber based organic electrochemical transistor integrated with molecularly imprinted membrane for uric acid detection. Talanta 2022, 238, 123055. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Worwood, M.; May, A.M.; Bain, B.J. Iron Deficiency Anaemia and Iron Overload. In Dacie and Lewis Practical Haematology, 12th ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780702069353. [Google Scholar]
- Zhang, Y.; Cheng, Y.; Zhou, Y.; Li, B.; Gu, W.; Shi, X.; Xian, Y. Electrochemical sensor for bisphenol A based on magnetic nanoparticles decorated reduced graphene oxide. Talanta 2013, 107, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Mahpishanian, S.; Sereshti, H. Graphene oxide-based dispersive micro-solid phase extraction for separation and preconcentration of nicotine from biological and environmental water samples followed by gas chromatography-flame ionization detection. Talanta 2014, 130, 71–77. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Li, S.; Qu, J. Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta 2018, 178, 188–194. [Google Scholar] [CrossRef]
- Chaudhary, M.; Verma, S.; Kumar, A.; Basavaraj, Y.B.; Tiwari, P.; Singh, S.; Chauhan, S.K.; Kumar, P.; Singh, S.P. Graphene oxide based electrochemical immunosensor for rapid detection of groundnut bud necrosis orthotospovirus in agricultural crops. Talanta 2021, 235, 122717. [Google Scholar] [CrossRef] [PubMed]
- Minitha, C.R.; Anithaa, V.S.; Subramaniam, V.; Rajendra Kumar, R.T. Impact of Oxygen Functional Groups on Reduced Graphene Oxide-Based Sensors for Ammonia and Toluene Detection at Room Temperature. ACS Omega 2018, 3, 4105–4112. [Google Scholar] [CrossRef] [PubMed]
- Brownson, D.A.C.; Banks, C.E. The Handbook of Graphene Electrochemistry; Springer: London, UK, 2014; ISBN 9781447164289. [Google Scholar]
- Bard, A.J.; Faulkner, L. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Nicholson, R.S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Randviir, E.P. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochim. Acta 2018, 286, 179–186. [Google Scholar] [CrossRef]
- Lavagnini, I.; Antiochia, R.; Magno, F. An Extended Method for the Practical Evaluation of the Standard Rate Constant from Cyclic Voltammetric Data. Electroanalysis 2004, 16, 505–506. [Google Scholar] [CrossRef]
- Shakeela, K.; Dithya, A.S.; Rao, C.H.J.; Rao, G.R. Electrochemical behaviour of Cu(II)/Cu(I) redox couple in 1-hexyl-3-methylimidazolium chloride ionic liquid. J. Chem. Sci. 2015, 127, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Bhalla, V.; Dravid, V.; Shekhawat, G.; Wu, J.; Prasad, E.S.; Suri, C.R. Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes. Sci. Rep. 2012, 2, srep00877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Saini, P.; Singh, B.P.; Singh, P.; Tandon, R.P.; Mahapatro, A.K.; Singh, S.P. Tuneable Physicochemical Properties of Thermally Annealed Graphene Oxide Powder and Thin Films. J. Nanosci. Nanotechnol. 2017, 18, 1763–1771. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Singh, A.; Shukla, A.; Kaswan, J.; Arora, K.; Ramirez-Vick, J.; Singh, P.; Singh, S.P. Anti-IL8/AuNPs-rGO/ITO as an Immunosensing Platform for Noninvasive Electrochemical Detection of Oral Cancer. ACS Appl. Mater. Interfaces 2017, 9, 27462–27474. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Tiwari, S.; Srivastava, S.; Srivastava, M.; Yadav, B.K.; Kumar, S.; Tran, T.T.; Dewan, A.K.; Mulchandani, A.; et al. Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection. Adv. Sci. 2015, 2, 1500048. [Google Scholar] [CrossRef]
- Vasudev, A.; Kaushik, A.; Bhansali, S. Electrochemical immunosensor for label free epidermal growth factor receptor (EGFR) detection. Biosens. Bioelectron. 2013, 39, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Ogun, A.S.; Adeyinka, A. Biochemistry, Transferrin. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, H.; Chittineedi, P.; Bellala, R.S.; Bellala, V.M.; Singh, S.; Kumari, R.; Chandra, P.; Pandrangi, S.L.; Singh, S.P. Clinically Deployable Bioelectronic Sensing Platform for Ultrasensitive Detection of Transferrin in Serum Sample. Biosensors 2023, 13, 406. https://doi.org/10.3390/bios13030406
Kaur H, Chittineedi P, Bellala RS, Bellala VM, Singh S, Kumari R, Chandra P, Pandrangi SL, Singh SP. Clinically Deployable Bioelectronic Sensing Platform for Ultrasensitive Detection of Transferrin in Serum Sample. Biosensors. 2023; 13(3):406. https://doi.org/10.3390/bios13030406
Chicago/Turabian StyleKaur, Harleen, Prasanthi Chittineedi, Ravi Shankar Bellala, Venkata Madhavi Bellala, Sandeep Singh, Rohini Kumari, Pranjal Chandra, Santhi Latha Pandrangi, and Surinder P. Singh. 2023. "Clinically Deployable Bioelectronic Sensing Platform for Ultrasensitive Detection of Transferrin in Serum Sample" Biosensors 13, no. 3: 406. https://doi.org/10.3390/bios13030406
APA StyleKaur, H., Chittineedi, P., Bellala, R. S., Bellala, V. M., Singh, S., Kumari, R., Chandra, P., Pandrangi, S. L., & Singh, S. P. (2023). Clinically Deployable Bioelectronic Sensing Platform for Ultrasensitive Detection of Transferrin in Serum Sample. Biosensors, 13(3), 406. https://doi.org/10.3390/bios13030406