Colorimetric Sensing of the Peroxide Number of Milk Powder Using CsPbBr3 Perovskite Nanocrystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Instruments
2.3. Preparation of CsPbBr3 NCs and 9-Octadecenyl Iodide Amine
2.4. Preparation of Standard Colorimetric Card
2.5. Colorimetric Sensing for the Peroxide Number of a Milk Powder Sample
3. Results and Discussion
3.1. Solvent Selection for the Fat Extraction
3.2. Performance Evaluation for the Colorimetric Sensing of the Peroxide Number Using CsPbBr3 NCs
3.3. Reproducibility of the Colorimetric Sensing Approach
3.4. Colorimetric Sensing of the Peroxide Number for Milk Powder Samples Using CsPbBr3 NCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nadal, M.R.; Servin, J.L.C.; Castellote, A.I.; Rivero, M.; López-Sabater, M.C. Oxidation stability of the lipid fraction in milk powder formulas. Food Chem. 2007, 100, 756–763. [Google Scholar] [CrossRef]
- Yin, H.Y.; Porter, N.A. New insights regarding the autoxidation of polyunsaturated fatty acids. Antioxid. Redox Signal 2005, 7, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.X.; Zhang, Y.C.; Dai, Z.Y.; Pan, L.N. Study on Influential Factors and Progress of Fat Oxidation in Infant Formula. China Dairy Ind. 2011, 39, 27–30. [Google Scholar]
- Guillen, M.D.; Cabo, N. Usefulness of the frequency data of the Fourier transform infrared spectra to evaluate the degree of oxidation of edible oils. J. Agric. Food Chem. 1999, 47, 709–719. [Google Scholar] [CrossRef]
- Gotoh, N.; Watanabe, H.; Osato, R.; Inagaki, K.; Iwasawa, A.; Wada, S. Novel approach on the risk assessment of oxidized fats and oils for perspectives of food safety and quality. I. Oxidized fats and oils induces neurotoxicity relating pica behavior and hypoactivity. Food Chem. Toxicol. 2006, 44, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.F.; Zhang, Y.L. Detection of Fat Peroxide Value in Infant Formula and Its Significance. Mod. Food 2018, 24, 131–132+5. [Google Scholar] [CrossRef]
- Rohfritsch, Z.; Schafer, O.; Giuffrida, F. Analysis of Oxidative Carbonyl Compounds by UPLC-High-Resolution Mass Spectrometry in Milk Powder. J. Agric. Food Chem. 2019, 67, 3511–3520. [Google Scholar] [CrossRef]
- Jablonski, J.E.; Moore, J.C.; Harnly, J.M. Nontargeted Detection of Adulteration of Skim Milk Powder with Foreign Proteins Using UHPLC-UV. J. Agric. Food Chem. 2014, 62, 5198–51206. [Google Scholar] [CrossRef]
- Qin, J.Y.; Xie, L.J.; Ying, Y.B. Feasibility of Terahertz Time-Domain Spectroscopy to Detect Tetracyclines Hydrochloride in Infant Milk Powder. Anal. Chem. 2014, 86, 11750–11757. [Google Scholar] [CrossRef]
- Scholl, P.F.; Farris, S.M.; Mossoba, M.M. Rapid Turbidimetric Detection of Milk Powder Adulteration with Plant Proteins. J. Agric. Food Chem. 2014, 62, 1498–1505. [Google Scholar] [CrossRef]
- Scholl, P.F.; Bergana, M.M.; Yakes, B.J.; Xie, Z.; Zbylut, S.; Downey, G.; Mossoba, M.; Jablonski, J.; Magaletta, R.; Holroyd, S.E.; et al. Effects of the Adulteration Technique on the Near-Infrared Detection of Melamine in Milk Powder. J. Agric. Food Chem. 2017, 65, 5799–5809. [Google Scholar] [CrossRef] [PubMed]
- GB 5009.227-2016; National Food Safety Standards—Determination of Peroxidation Value in Foods (in China). National Health and Family Planning Commission of the People’s Republic of China. Standards Press of China: Beijing, China, 2016.
- ISO 3976:2006; Milk Fat—Determination of Peroxide Value. International Organization for Standardization: Geneva, Switzerland, 2006.
- Wang, M.Z.; Huyan, Z.Y.; Jing, B.Y.; Mao, X.H.; Yu, X.Z. Analysis of Edible Oil Oxidation Based on Changes in the Electrical Conductivity of the Extracted Aqueous Phase. Eur. J. Lipid Sci. Technol. 2019, 121, 1800441. [Google Scholar] [CrossRef]
- Jiang, H.; He, Y.C.; Xu, W.D.; Chen, Q.S. Quantitative Detection of Acid Value During Edible Oil Storage by Raman Spectroscopy: Comparison of the Optimization Effects of BOSS and VCPA Algorithms on the Characteristic Raman Spectra of Edible Oils. Food Anal. Methods 2021, 14, 1826–1835. [Google Scholar] [CrossRef]
- Jiang, Y.; Su, M.; Yu, T.; Du, S.; Liao, L.; Wang, H.; Wu, Y.; Liu, H. Quantitative determination of peroxide value of edible oil by algorithm-assisted liquid interfacial surface enhanced Raman spectroscopy. Food Chem. 2021, 344, 128709. [Google Scholar] [CrossRef]
- Du, S.; Su, M.; Jiang, Y.; Yu, F.; Xu, Y.; Lou, X.; Yu, T.; Liu, H. Direct Discrimination of Edible Oil Type, Oxidation, and Adulteration by Liquid Interfacial Surface-Enhanced Raman Spectroscopy. ACS Sens. 2019, 4, 1798–1805. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, S.; Zhu, Y.; Li, F.; Jin, J.; Dong, J.; Lin, F.; Wang, Y.; Chen, X. Dual-Mode of Fluorescence Turn-On and Wavelength-Shift for Methylamine Gas Sensing Based on Space-Confined Growth of Methylammonium Lead Tribromide Perovskite Nanocrystals. Anal. Chem. 2020, 92, 5661–5665. [Google Scholar] [CrossRef]
- Li, X.; Cao, F.; Yu, D.; Chen, J.; Sun, Z.; Shen, Y.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y.; et al. All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small 2017, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yin, Y.D. All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges. ACS Cent. Sci. 2018, 4, 668–679. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281. [Google Scholar] [CrossRef]
- Hu, Y.; Bai, F.; Liu, X.; Ji, Q.; Miao, X.; Qiu, T.; Zhang, S. Bismuth Incorporation Stabilized alpha-CsPbI3 for Fully Inorganic Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 2219–2227. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, H.; Huang, H.; Reckmeier, C.; Zhang, Y.; Choy, W.C.; Rogach, A.L. Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Lett. 2017, 17, 598. [Google Scholar] [CrossRef]
- Liang, F.-C.; Jhuang, F.-C.; Fang, Y.-H.; Benas, J.-S.; Chen, W.-C.; Yan, Z.-L.; Lin, W.-C.; Su, C.-J.; Sato, Y.; Chiba, T.; et al. Synergistic Effect of Cation Composition Engineering of Hybrid Cs1−xFAxPbBr3 Nanocrystals for Self-Healing Electronics Application. Adv. Mater. 2023, 35, 2207617. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.P.; Yin, Y.X.; Zhang, S.F.; Li, N.W.; Guo, Y.G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Huang, Y.; Xu, W.; Yao, Q.; Liu, X.; Ding, C.; Chen, X. Cesium lead halide perovskite nanocrystals for ultraviolet and blue light blocking. Chin. Chem. Lett. 2019, 30, 1021–1023. [Google Scholar] [CrossRef]
- Chen, C.; Cai, Q.; Luo, F.; Dong, N.; Guo, L.; Qiu, B.; Lin, Z. Sensitive Fluorescent Sensor for Hydrogen Sulfide in Rat Brain Microdialysis via CsPbBr3 Quantum Dots. Anal. Chem. 2019, 91, 15915–15921. [Google Scholar] [CrossRef]
- Chen, X.; Hu, H.W.; Xia, Z.M.; Gao, W.; Gou, W.; Qua, Y.; Ma, Y. CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection. J. Mater. Chem. C 2017, 5, 309–313. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, F.; Huang, Y.; Lin, F.; Chen, X. Wavelength-Shift-Based Colorimetric Sensing for Peroxide Number of Edible Oil Using CsPbBr3 Perovskite Nanocrystals. Anal. Chem. 2019, 91, 14183–14187. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Feng, Y.; Huang, Y.; Yao, Q.; Huang, G.; Zhu, Y.; Chen, X. Colorimetric sensing of chloride in sweat based on fluorescence wavelength shift via halide exchange of CsPbBr3 perovskite nanocrystals. Microchim. Acta 2021, 188, 8. [Google Scholar] [CrossRef]
- Jin, J.; Lin, J.; Huang, Y.; Zhang, L.; Jiang, Y.; Tian, D.; Lin, F.; Wang, Y.; Chen, X. High sensitivity ratiometric fluorescence temperature sensing using the microencapsulation of CsPbBr3 and K2SiF6, Mn4+ phosphor. Chin. Chem. Lett. 2022, 33, 4798–4802. [Google Scholar] [CrossRef]
- Yin, W.; Li, H.; Chesman, A.S.R.; Tadgell, B.; Scully, A.D.; Wang, M.; Huang, W.; McNeill, C.R.; Wong, W.W.H.; Medhekar, N.V.; et al. Detection of Halomethanes Using Cesium Lead Halide Perovskite Nanocrystals. ACS Nano 2021, 15, 1454–1464. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Y.; Li, F.; Zhang, L.; You, L.; Guo, Z.; Huang, Y.; Zhao, L.; Chen, X. Colorimetric Sensing of Benzoyl Peroxide Based on the Emission Wavelength-Shift of CsPbBr3 Perovskite Nanocrystals. Chemosensors 2021, 9, 319. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed]
- Akkerman, Q.A.; Martínez-Sarti, L.; Goldoni, L.; Imran, M.; Baranov, D.; Bolink, H.J.; Palazon, F.; Manna, L. Molecular Iodine for a General Synthesis of Binary and Ternary Inorganic and Hybrid Organic-Inorganic Iodide Nanocrystals. Chem. Mater. 2018, 30, 6915–6921. [Google Scholar] [CrossRef]
- Li, T.M.; Xu, Y.M.; Wang, L.Y. Significance and Method for Determination of Peroxide Value in Infant Formula Milk Powder. The Third China Dairy Industry Conference; Dairy Association of China: Zhengzhou, China, 2012; pp. 203–205. [Google Scholar]
- Kim, E.H.J.; Chen, X.D.; Pearce, D. Surface composition of industrial spray-dried milk powders. 3. Changes in the surface composition during long-term storage. J. Food Eng. 2009, 94, 182–191. [Google Scholar] [CrossRef]
- Cesa, S.; Casadei, M.A.; Cerreto, F.; Paolicelli, P. Influence of fat extraction methods on the peroxide value in infant formulas. Food Res. Int. 2012, 48, 584–591. [Google Scholar] [CrossRef]
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | |
---|---|---|---|---|---|
Sensing color | |||||
Sensing results (mmol/kg) | 0.1 | 0.2 | 0.3 | 0.4 | 1.1 |
ISO test result (mmol/kg) | 0.05 | 0.15 | 0.32 | 0.45 | 1.04 |
Quality | Edible | Edible | Edible | Edible | Inedible |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhu, Y.; Guo, Z.; You, L.; Zhang, C.; Chen, X. Colorimetric Sensing of the Peroxide Number of Milk Powder Using CsPbBr3 Perovskite Nanocrystals. Biosensors 2023, 13, 493. https://doi.org/10.3390/bios13040493
Zhang L, Zhu Y, Guo Z, You L, Zhang C, Chen X. Colorimetric Sensing of the Peroxide Number of Milk Powder Using CsPbBr3 Perovskite Nanocrystals. Biosensors. 2023; 13(4):493. https://doi.org/10.3390/bios13040493
Chicago/Turabian StyleZhang, Li, Yimeng Zhu, Zhiyong Guo, Longjie You, Chen Zhang, and Xi Chen. 2023. "Colorimetric Sensing of the Peroxide Number of Milk Powder Using CsPbBr3 Perovskite Nanocrystals" Biosensors 13, no. 4: 493. https://doi.org/10.3390/bios13040493
APA StyleZhang, L., Zhu, Y., Guo, Z., You, L., Zhang, C., & Chen, X. (2023). Colorimetric Sensing of the Peroxide Number of Milk Powder Using CsPbBr3 Perovskite Nanocrystals. Biosensors, 13(4), 493. https://doi.org/10.3390/bios13040493