Unique Electron-Transfer-Mediated Electrochemiluminescence of AuPt Bimetallic Nanoclusters and the Application in Cancer Immunoassay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of GSH-AuPt NCs
2.3. Fabrications of Ab2-GSH-AuPt NCs
2.4. Fabrications of ECL Sandwich Immunoassay
2.5. Electrochemical Measurements
2.6. Instruments
3. Results and Discussion
3.1. Synthesis and Characterizations of GSH-AuPt NCs
3.2. ECL Properties of GSH-Au2.5Pt NCs
3.3. ECL Performance of AFP Immunoassay
3.4. Detections of AFP and Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Nagarajan, A.V.; Alfonso, D.R.; Sun, M.; Kauffman, D.R.; Mpourmpakis, G.; Jin, R. Boosting CO2 Electrochemical Reduction with Atomically Precise Surface Modification on Gold Nanoclusters. Angew. Chem. Int. Ed. 2021, 60, 6351. [Google Scholar] [CrossRef] [PubMed]
- Zugic, B.; Wang, L.; Heine, C.; Zakharov, D.N.; Lechner, B.A.J.; Stach, E.A.; Biener, J.; Salmeron, M.; Madix, R.J.; Friend, C.M. Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nat. Mater. 2017, 16, 558. [Google Scholar] [CrossRef]
- Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845. [Google Scholar] [CrossRef] [PubMed]
- Schmid, G. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 1992, 92, 1709. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc. Chem. Commun. 1994, 801, 801. [Google Scholar] [CrossRef]
- Miles, D.T.; Murray, R.W. Redox and Double-Layer Charging of Phenothiazine Functionalized Monolayer-Protected Clusters. Anal. Chem. 2001, 73, 921. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, T.-Y.; Zhou, M.; Song, Y.; Rosi, N.L.; Jin, R. A Correlated Series of Au/Ag Nanoclusters Revealing the Evolutionary Patterns of Asymmetric Ag Doping. J. Am. Chem. Soc. 2018, 140, 14235. [Google Scholar] [CrossRef]
- Schmid, G.; Pfeil, R.; Boese, R.; Bandermann, F.; Meyer, S.; Calis, G.H.M.; van der Velden, J.W.A. Au55[P(C6H5)3]12CI6—Ein Goldcluster ungewöhnlicher Größe. Chem. Ber. 1981, 114, 3634. [Google Scholar] [CrossRef]
- Jin, R.; Liu, C.; Zhao, S.; Das, A.; Xing, H.; Gayathri, C.; Xing, Y.; Rosi, N.L.; Gil, R.R.; Jin, R. Tri-icosahedral Gold Nanocluster [Au37(PPh3)10(SC2H4Ph)10X2]+: Linear Assembly of Icosahedral Building Blocks. ACS Nano 2015, 9, 8530. [Google Scholar] [CrossRef]
- Feng, J.; Huang, P.; Wu, F.-Y. Gold–platinum bimetallic nanoclusters with enhanced peroxidase-like activity and their integrated agarose hydrogel-based sensing platform for the colorimetric analysis of glucose levels in serum. Analyst 2017, 142, 4106. [Google Scholar] [CrossRef]
- Ju, Y.J.; Li, N.; Liu, S.G.; Han, L.; Xiao, N.; Luo, H.Q.; Li, N.B. Ratiometric fluorescence method for malachite green detection based on dual-emission BSA-protected gold nanoclusters. Sens. Actuators B Chem. 2018, 275, 244. [Google Scholar] [CrossRef]
- Deng, H.-H.; Zhang, L.-N.; He, S.-B.; Liu, A.-L.; Li, G.-W.; Lin, X.-H.; Xia, X.-H.; Chen, W. Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu2+ sensing. Biosens. Bioelectron. 2015, 65, 397. [Google Scholar] [CrossRef] [PubMed]
- Sang, F.; Zhang, X.; Shen, F. Fluorescent methionine-capped gold nanoclusters for ultra-sensitive determination of copper(II) and cobalt(II), and their use in a test strip. Microchim. Acta 2019, 186, 373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, L.; Zhang, M.; Deng, C.; Yang, X. A gold-silver bimetallic nanocluster-based fluorescent probe for cysteine detection in milk and apple. Spectrochim. Acta A Mol. Biomol. 2022, 278, 121345. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Feng, D.; Zhao, J.; Guo, Z.; Zhang, Y. Simultaneous fluoroimmunoassay of two tumor markers based on CdTe quantum dots and gold nanocluster coated-silica nanospheres as labels. RSC Adv. 2015, 5, 105992. [Google Scholar] [CrossRef]
- Cao, J.T.; Liu, F.R.; Hou, F.; Peng, J.; Ren, S.W.; Liu, Y.M. Cathodic electrochemiluminescence behaviour of MoS2 quantum dots and its biosensing of microRNA-21. Analyst 2018, 143, 3702. [Google Scholar] [CrossRef]
- Chen, X.; Gui, W.; Liu, H.; Ma, Q. A novel CuZnInS quantum dot-based ECL sensing system for lysophosphatidic acid detection. Analyst 2017, 142, 4142. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Ma, Q. Recent advances in quantum dot-based electrochemiluminescence sensors. J. Mater. Chem. C 2018, 6, 942. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, X.; Wang, D.; Jia, J.; Zhang, B.; Zou, G. Surface Defect-Involved and Single-Color Electrochemiluminescence of Gold Nanoclusters for Immunoassay. Anal. Chem. 2022, 94, 12070. [Google Scholar] [CrossRef]
- Weng, Z.; Li, Z.; Zhang, Y.; Zhang, M.; Huang, Z.; Chen, W.; Peng, H. Gold Nanocluster Probe-Based Electron-Transfer-Mediated Electrochemiluminescence Sensing Strategy for an Ultrasensitive Copper Ion Detection. Anal. Chem. 2022, 94, 15896. [Google Scholar] [CrossRef]
- Peng, H.P.; Jian, M.L.; Huang, Z.N.; Wang, W.J.; Deng, H.H.; Wu, W.H.; Liu, A.L.; Xia, X.H.; Chen, W. Facile electrochemiluminescence sensing platform based on high-quantum-yield gold nanocluster probe for ultrasensitive glutathione detection. Biosens. Bioelectron. 2018, 105, 71. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, Q.; Kang, Q.; Zhang, B.; Shen, D.; Zou, G. Near-Infrared Electrochemiluminescence Immunoassay with Biocompatible Au Nanoclusters as Tags. Anal. Chem. 2020, 92, 7581. [Google Scholar] [CrossRef] [PubMed]
- Carrara, S.; Arcudi, F.; Prato, M.; De Cola, L. Amine-Rich Nitrogen-Doped Carbon Nanodots as a Platform for Self-Enhancing Electrochemiluminescence. Angew. Chem. Int. Ed. 2017, 56, 4757. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yuan, Y.; Zhuo, Y.; Chai, Y.; Yuan, R. Self-Enhanced Electrochemiluminescence Nanorods of Tris(bipyridine) Ruthenium(II) Derivative and Its Sensing Application for Detection of N-Acetyl-beta-d-glucosaminidase. Anal. Chem. 2016, 88, 2258. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, D.; Padelford, J.W.; Jiang, J.; Wang, G. Near-Infrared Electrogenerated Chemiluminescence from Aqueous Soluble Lipoic Acid Au Nanoclusters. J. Am. Chem. Soc. 2016, 138, 6380. [Google Scholar] [CrossRef]
- Wang, T.; Padelford, J.W.; Ma, H.; Gubitosi-Raspino, M.F.; Wang, G. Near-Infrared Electrochemiluminescence from Au Nanoclusters Enhanced by EDTA and Modulated by Ions. ChemElectroChem 2017, 4, 1697. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Y.; Li, L.; Wang, L.; Han, J.L.; Wang, A.J. Metal single-atom-confined electrocatalysts to water oxidation: Development, innovation, and challenges. Electrochem. Sci. Adv. 2022, 2, e202100102. [Google Scholar] [CrossRef]
- Zhang, H.; Toshima, N. Glucose oxidation using Au-containing bimetallic and trimetallic nanoparticles. Catal. Sci. Technol. 2013, 3, 268. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, J.; Xiong, C.; Xiao, Y.; Zhang, X.; Wang, S. Enhanced electrochemiluminescence of gold nanoclusters via silver doping and their application for ultrasensitive detection of dopamine. Analyst 2019, 144, 2643. [Google Scholar] [CrossRef]
- Fu, L.; Gao, X.; Dong, S.; Hsu, H.Y.; Zou, G. Surface-Defect-Induced and Synergetic-Effect-Enhanced NIR-II Electrochemiluminescence of Au-Ag Bimetallic Nanoclusters and Its Spectral Sensing. Anal. Chem. 2021, 93, 4909. [Google Scholar] [CrossRef]
- Jia, H.; Yang, L.; Fan, D.; Kuang, X.; Sun, X.; Wei, Q.; Ju, H. Cobalt ion doping to improve electrochemiluminescence emisssion of gold nanoclusters for sensitive NIR biosensing. Sens. Actuators B Chem. 2022, 367, 132034. [Google Scholar] [CrossRef]
- Lai, Y.; Zhang, C.; Deng, Y.; Yang, G.; Li, S.; Tang, C.; He, N. A novel α-fetoprotein-MIP immunosensor based on AuNPs/PTh modified glass carbon electrode. Chin. Chem. Lett. 2019, 30, 160. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Eziz, N.; Yang, Y.; Li, G.; Guan, M. An ultrasensitive electrochemiluminescence immunosensor for alpha-fetoprotein based on a poly(aniline-luminol)/graphene oxide nanocomposite. Anal. Bioanal. Chem. 2019, 411, 5175. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, S.; Wang, J.; Wang, J. Dual-recognition immune-co-chemical ECL-sensor based on Ti,Mg@N-CDs-induced and novel signal-sensing units Poly(DVB-co-PBA)-reported for alpha-fetoprotein detection. Sens. Actuators B Chem. 2021, 346, 130548. [Google Scholar] [CrossRef]
- Chen, H.; Huang, J.; Zhang, R.; Yan, F. Dual-mode electrochemiluminescence and electrochemical sensor for alpha-fetoprotein detection in human serum based on vertically ordered mesoporous silica films. Front. Chem. 2022, 10, 1023998. [Google Scholar] [CrossRef]
- Dutta, K.; De, S.; Das, B.; Bera, S.; Guria, B.; Ali, M.S.; Chattopadhyay, D. Development of an Efficient Immunosensing Platform by Exploring Single-Walled Carbon Nanohorns (SWCNHs) and Nitrogen Doped Graphene Quantum Dot (N-GQD) Nanocomposite for Early Detection of Cancer Biomarker. ACS Biomater. Sci. Eng. 2021, 7, 5541. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Q.; Qin, Y.; Cao, Y.; Zhao, J.; Zhang, K.; Cao, Y. Ordered Labeling-Facilitated Electrochemical Assay of Alpha-Fetoprotein-L3 Ratio for Diagnosing Hepatocellular Carcinoma. ACS Appl. Mater. Interfaces 2023, 15, 6411. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Zhang, Y.; Wei, Q.; Ma, H.; Wu, D.; Li, Y.; Zhang, Y.; Du, B. Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of alpha-fetoprotein. Biosens. Bioelectron. 2014, 53, 305. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, R.; Chai, Y.Q.; Yin, B. Amperometric immunosensor based on multiwalled carbon nanotubes/Prussian blue/nanogold-modified electrode for determination of alpha-fetoprotein. Anal. Biochem. 2010, 407, 65. [Google Scholar] [CrossRef]
- Hong, J.; Lee, S.; Lee, Y.; Han, W. Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced Raman scattering properties. J. Am. Chem. Soc. 2012, 134, 4565–4568. [Google Scholar] [CrossRef]
- Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B Chem. 2019, 283, 590. [Google Scholar] [CrossRef]
- Shen, J.; Xu, S.; Zhao, C.; Qiao, X.; Liu, H.; Zhao, Y.; Wei, J.; Zhu, Y. Bimetallic Au@Pt Nanocrystal Sensitization Mesoporous alpha-Fe2O3 Hollow Nanocubes for Highly Sensitive and Rapid Detection of Fish Freshness at Low Temperature. ACS Appl. Mater. Interfaces 2021, 13, 57597. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Deng, L.; Cai, H.; Yang, J.; Bao, L.; Zhu, Y.; Wang, X. Bimetallic PtCu Nanocrystal Sensitization WO3 Hollow Spheres for Highly Efficient 3-Hydroxy-2-butanone Biomarker Detection. ACS Appl. Mater. Interfaces 2020, 12, 18904. [Google Scholar] [CrossRef]
- Wang, A.-J.; Zhu, X.-Y.; Chen, Y.; Luo, X.; Xue, Y.; Feng, J.-J. Ultrasensitive label-free electrochemical immunoassay of carbohydrate antigen 15-3 using dendritic Au@Pt nanocrystals/ferrocene-grafted-chitosan for efficient signal amplification. Sens. Actuators B Chem. 2019, 292, 164. [Google Scholar] [CrossRef]
- Yao, M.-S.; Cao, L.-A.; Hou, G.-L.; Cai, M.-L.; Xiu, J.-W.; Fang, C.-H.; Yuan, F.-L.; Chen, Y.-F. Gold–tin co-sensitized ZnO layered porous nanocrystals: Enhanced responses and anti-humidity. RSC Adv. 2017, 7, 20273. [Google Scholar] [CrossRef]
- Fujita, D.; Ohnishi, K.; Ohgi, T. Discrete charging effects in gold nanoclusters grown on self-assembled monolayers. Sci. Technol. Adv. Mater. 2002, 3, 283. [Google Scholar] [CrossRef]
- Ishida, Y.; Morita, A.; Tokunaga, T.; Yonezawa, T. Sputter Deposition toward Short Cationic Thiolated Fluorescent Gold Nanoclusters: Investigation of Their Unique Structural and Photophysical Characteristics Using High-Performance Liquid Chromatography. Langmuir 2018, 34, 4024. [Google Scholar] [CrossRef] [PubMed]
- Rabee, A.I.M.; Zhao, D.; Cisneros, S.; Kreyenschulte, C.R.; Kondratenko, V.; Bartling, S.; Kubis, C.; Kondratenko, E.V.; Brückner, A.; Rabeah, J. Role of interfacial oxygen vacancies in low-loaded Au-based catalysts for the low-temperature reverse water gas shift reaction. Appl. Catal. B 2023, 321, 122083. [Google Scholar] [CrossRef]
- Wu, Q.; Cen, J.; Zhao, Y.; Tong, X.; Li, Y.; Frenkel, A.I.; Zhao, S.; Orlov, A. A comprehensive study of catalytic, morphological and electronic properties of ligand-protected gold nanoclusters using XPS, STM, XAFS, and TPD techniques. Phys. Chem. Chem. Phys. 2018, 20, 1497. [Google Scholar] [CrossRef]
- Fan, W.T.; Qin, Y.; Hu, X.B.; Yan, J.; Wu, W.T.; Liu, Y.L.; Huang, W.H. Stretchable Electrode Based on Au@Pt Nanotube Networks for Real-Time Monitoring of ROS Signaling in Endothelial Mechanotransduction. Anal. Chem. 2020, 92, 15639. [Google Scholar] [CrossRef]
- Wu, N.; Jiao, L.; Song, S.; Wei, X.; Cai, X.; Huang, J.; Sha, M.; Gu, W.; Song, W.; Zhu, C. Tuning the Ratio of Pt(0)/Pt(II) in Well-Defined Pt Clusters Enables Enhanced Electrocatalytic Reduction/Oxidation of Hydrogen Peroxide for Sensitive Biosensing. Anal. Chem. 2021, 93, 15982. [Google Scholar] [CrossRef]
- Zhang, K.; Dong, H.; Dai, W.; Meng, X.; Lu, H.; Wu, T.; Zhang, X. Fabricating Pt/Sn-In2O3 Nanoflower with Advanced Oxygen Reduction Reaction Performance for High-Sensitivity MicroRNA Electrochemical Detection. Anal. Chem. 2017, 89, 648. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Xing, H.; Zhang, X.; Li, J.; Wang, E. Enhanced Electrochemiluminescence Behavior of Gold-Silver Bimetallic Nanoclusters and Its Sensing Application for Mercury(II). Anal. Chem. 2017, 89, 7788. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Huang, K.; He, S.; Xue, L.; Peng, H.; Zha, D.; Sun, W.; Xia, X.; Chen, W. Rational Design of High-Performance Donor-Linker-Acceptor Hybrids Using a Schiff Base for Enabling Photoinduced Electron Transfer. Anal. Chem. 2020, 92, 2019–2026. [Google Scholar] [CrossRef]
- Zheng, C.; Zheng, A.-X.; Liu, B.; Zhang, X.-L.; He, Y.; Li, J.; Yang, H.-H.; Chen, G. One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem. Commun. 2014, 50, 13103. [Google Scholar] [CrossRef]
- Peng, H.; Huang, Z.; Deng, H.; Wu, W.; Huang, K.; Li, Z.; Chen, W.; Liu, J. Dual Enhancement of Gold Nanocluster Electrochemiluminescence: Electrocatalytic Excitation and Aggregation-Induced Emission. Angew. Chem. Int. Ed. 2020, 59, 9982. [Google Scholar] [CrossRef]
- Peng, H.; Huang, Z.; Sheng, Y.; Zhang, X.; Deng, H.; Chen, W.; Liu, J. Pre-oxidation of Gold Nanoclusters Results in a 66% Anodic Electrochemiluminescence Yield and Drives Mechanistic Insights. Angew. Chem. Int. Ed. 2019, 58, 11691. [Google Scholar] [CrossRef]
- Guo, W.; Ding, H.; Gu, C.; Liu, Y.; Jiang, X.; Su, B.; Shao, Y. Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single Sample. J. Am. Chem. Soc. 2018, 140, 15904. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Liu, S.; Zou, G.; Zhang, X. Ultrasensitive immunoassay based on anodic near-infrared electrochemiluminescence from dual-stabilizer-capped CdTe nanocrystals. Anal. Chem. 2012, 84, 10645. [Google Scholar] [CrossRef]
- Mo, G.; He, X.; Zhou, C.; Ya, D.; Feng, J.; Yu, C.; Deng, B. A novel ECL sensor based on a boronate affinity molecular imprinting technique and functionalized SiO2@CQDs/AuNPs/MPBA nanocomposites for sensitive determination of alpha-fetoprotein. Biosens. Bioelectron. 2019, 126, 558–564. [Google Scholar] [CrossRef]
- Yin, M.; Wang, Y.; Gao, X.; Du, S.; Cheng, Y.; Yu, S.; Zou, G.; Xue, F. Electrochemiluminescence ultrasensitive immunoassay for carbohydrate antigen 125 based on AgInS2/ZnS nanocrystals. Anal. Bioanal. Chem. 2021, 413, 2207. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.; Tan, X.; Long, X.; He, Y.; Miao, W. Spectrum-Resolved Dual-Color Electrochemiluminescence Immunoassay for Simultaneous Detection of Two Targets with Nanocrystals as Tags. Anal. Chem. 2017, 89, 13024. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhang, R.; Cong, S.; Guo, J.; Shao, M.; Liu, W.; Zhang, L.; Lu, X. Near-Infrared Electrogenerated Chemiluminescence from Simple Copper Nanoclusters for Sensitive Alpha-Fetoprotein Sensing. Anal. Chem. 2022, 94, 4538. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Jiang, X.; Mo, G.; Feng, J.; Deng, B. Boron nitride quantum dots as electrochemiluminescence coreactants of rGO@Au@Ru–SiO2 for label-free detection of AFP in human serum. Electrochim. Acta 2020, 335, 135621. [Google Scholar] [CrossRef]
- Zheng, X.; Hua, X.; Qiao, X.; Xia, F.; Tian, D.; Zhou, C. Simple and signal-off electrochemiluminescence immunosensor for alpha fetoprotein based on gold nanoparticle-modified graphite-like carbon nitride nanosheet nanohybrids. RSC Adv. 2016, 6, 21308. [Google Scholar] [CrossRef]
- Khan, M.S.; Ameer, H.; Chi, Y. Label-free and sensitive electrochemiluminescent immunosensor based on novel luminophores of Zn2SnO4 nanorods. Sens. Actuators B Chem. 2021, 337, 129761. [Google Scholar] [CrossRef]
- Li, X.; Qin, X.; Tian, Z.; Wang, K.; Xia, X.; Wu, Y.; Liu, S. Gold Nanowires Array-Based Closed Bipolar Nanoelectrode System for Electrochemiluminescence Detection of alpha-Fetoprotein on Cell Surface. Anal. Chem. 2022, 94, 7350. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; Zhang, Y.; Wang, Z.; Gao, H.; Rong, S.; Meng, L.; Dai, J.; Pan, H.; Chang, D. A sandwich-configuration electrochemiluminescence immunoassay based on Cu2O@OMC-Ru nanocrystals and OMC-MoS2 nanocomposites for determination of alpha-fetoprotein. Microchim. Acta 2021, 188, 213. [Google Scholar] [CrossRef]
- Zhou, J.; Han, T.; Ma, H.; Yan, T.; Pang, X.; Li, Y.; Wei, Q. A novel electrochemiluminescent immunosensor based on the quenching effect of aminated graphene on nitrogen-doped carbon quantum dots. Anal. Chim. Acta 2015, 889, 82. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, X. Electrodeposition of CdSe quantum dots and its application to an electrochemiluminescence immunoassay for α-fetoprotein. Microchim. Acta 2012, 178, 323. [Google Scholar] [CrossRef]
- Wang, X.; Gao, H.; Qi, H.; Gao, Q.; Zhang, C. Proximity Hybridization-Regulated Immunoassay for Cell Surface Protein and Protein-Overexpressing Cancer Cells via Electrochemiluminescence. Anal. Chem. 2018, 90, 3013. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wang, X.; Li, M.; Qi, H.; Gao, Q.; Zhang, C. Proximity hybridization-regulated electrogenerated chemiluminescence bioassay of alpha-fetoprotein via target-induced quenching mechanism. Biosens. Bioelectron. 2017, 98, 62. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-J.; Han, W.-D.; Wu, Y.-H.; Hu, X.-G.; Yuan, Y.-N.; Chen, W.; Peng, H.-P.; Liu, A.-L.; Lin, X.-H. Magnetic electrochemiluminescent immunoassay with quantum dots label for highly efficient detection of the tumor marker α-fetoprotein. J. Electroanal. Chem. 2017, 785, 8. [Google Scholar] [CrossRef]
- Liu, Q.; Han, M.; Bao, J.; Jiang, X.; Dai, Z. CdSe quantum dots as labels for sensitive immunoassay of cancer biomarker proteins by electrogenerated chemiluminescence. Analyst 2011, 136, 5197. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, G.; Chi, H.; Yang, S.; Niu, Q.; Wu, D.; Cao, W.; Li, T.; Ma, H.; Wei, Q. Self-Luminescent Lanthanide Metal-Organic Frameworks as Signal Probes in Electrochemiluminescence Immunoassay. J. Am. Chem. Soc. 2021, 143, 504. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sha, Y.; Li, W.; Wang, S.; Guo, Z.; Zhou, J.; Su, X.; Jiang, X. One-step preparation of disposable multi-functionalized g-C3N4 based electrochemiluminescence immunosensor for the detection of CA125. Sens. Actuators B Chem. 2016, 226, 62. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Li, X.; Yue, Q.; Dong, X.; Du, B.; Cao, W.; Wei, Q. Dual-Quenching Electrochemiluminescence Strategy Based on Three-Dimensional Metal-Organic Frameworks for Ultrasensitive Detection of Amyloid-beta. Anal. Chem. 2019, 91, 1989. [Google Scholar] [CrossRef]
GCEs | Rct | ∆E |
---|---|---|
a | 127 | 0.195 |
b | 1400 | 0.332 |
c | 1906 | 0.390 |
d | 2122 | 0.430 |
e | 2401 | 0.461 |
f | 2667 | 0.483 |
ECL Tags | Co-Reactant | Linear Range (ng·mL−1) | LOD (pg·mL−1) | Ref. |
---|---|---|---|---|
Cu NCs | K2S2O8 | 1–400 | 20.1 | [63] |
rGO@Au@Ru-SiO2 | BNQDs | 0.0001–100 | 0.03 | [64] |
Au-g-C3N4 NHs | K2S2O8 | 0.001–5 | 0.5 | [65] |
Au@Zn2SnO4 | K2S2O8 | 0.001–50 | 3.4 | [66] |
Ru(II)@SiO2 | TPrA | 0.002–50 | 1.8 | [67] |
Cu2O@OMC-Ru | TPrA | 0.0001–10 | 0.01 | [68] |
N-CQDs | K2S2O8 | 0.01–100 | 3.3 | [69] |
CdSe QDs | K2S2O8 | 0.05–200 | 2.0 | [70] |
CdTe NCs | DBAE | 0.01–80 | 5.0 | [59] |
Ru(phen)32+ | TPrA | 0.05–20 | 6.2 | [71] |
Ru(bpy)32+ | TPrA | 0.05–50 | 40 | [72] |
CdTe QDs | K2S2O8 | 1–200 | 320 | [73] |
CdSe | H2O2 | 0.002–32 | 2 | [74] |
GSH-AuPt2.5 NCs | TEA | 0.01–1000 | 1.0 | This work |
Added (ng·mL−1) | Detected (ng·mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|
1 | 1.21, 1.12, 1.18, 1.20, 1.13 | 116.80 | 3.50 |
6 | 6.38, 6.25, 6.66, 6.47, 6.43 | 107.30 | 2.31 |
60 | 61.44, 63.02, 61.53, 65.41, 64.27 | 105.22 | 2.73 |
350 | 353.67, 363.42, 374.61, 361.67, 366.43 | 104.39 | 2.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Liu, R.; Pan, G.; Cao, M.; Zhang, L. Unique Electron-Transfer-Mediated Electrochemiluminescence of AuPt Bimetallic Nanoclusters and the Application in Cancer Immunoassay. Biosensors 2023, 13, 550. https://doi.org/10.3390/bios13050550
Zhou H, Liu R, Pan G, Cao M, Zhang L. Unique Electron-Transfer-Mediated Electrochemiluminescence of AuPt Bimetallic Nanoclusters and the Application in Cancer Immunoassay. Biosensors. 2023; 13(5):550. https://doi.org/10.3390/bios13050550
Chicago/Turabian StyleZhou, Huiwen, Ruanshan Liu, Guangxing Pan, Miaomiao Cao, and Ling Zhang. 2023. "Unique Electron-Transfer-Mediated Electrochemiluminescence of AuPt Bimetallic Nanoclusters and the Application in Cancer Immunoassay" Biosensors 13, no. 5: 550. https://doi.org/10.3390/bios13050550
APA StyleZhou, H., Liu, R., Pan, G., Cao, M., & Zhang, L. (2023). Unique Electron-Transfer-Mediated Electrochemiluminescence of AuPt Bimetallic Nanoclusters and the Application in Cancer Immunoassay. Biosensors, 13(5), 550. https://doi.org/10.3390/bios13050550