Selection of a Novel DNA Aptamer Specific for 5-Hydroxymethylfurfural Using Capture-SELEX
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Selection of Aptamers Specific for 5-HMF Based on SELEX
2.3. Establishment of a Q-PCR Method for the Monitoring Selection Process
2.4. Preparation of Secondary Libraries
2.5. High-Throughput Sequencing and Sequence Analysis of the Enrichment Library
2.6. Isothermal Titration Calorimetry Analysis
2.7. The Quenching Biosensor Assay
3. Results
3.1. SELEX for 5-HMF Aptamers
3.2. High-Throughput Sequencing and Sequences Analysis of the Enriched Library
3.3. The Affinity Analysis of Aptamers and Its Mutants Using ITC
3.4. The Quenching Biosensor Assay
3.5. Analysis of the Aptamer Folding Status Using a Single Aptamer Molecule Beacon
3.6. Matrix Interference Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capuano, E.; Fogliano, V. Acrylamide and 5-Hydroxymethylfurfural (Hmf): A Review on Metabolism, Toxicity, Occurrence in Food and Mitigation Strategies. Lwt Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Capuano, E.; Ferrigno, A.; Acampa, I.; Serpen, A.; Acar, O.C.; Goekmen, V.; Fogliano, V. Effect of Flour Type on Maillard Reaction and Acrylamide Formation During Toasting of Bread Crisp Model Systems and Mitigation Strategies. Food Res. Int. 2009, 42, 1295–1302. [Google Scholar] [CrossRef]
- Choudhary, A.; Kumar, V.; Kumar, S.; Majid, I.; Aggarwal, P.; Suri, S. 5-Hydroxymethylfurfural (Hmf) Formation, Occurrence and Potential Health Concerns: Recent Developments. Toxin Rev. 2021, 40, 545–561. [Google Scholar] [CrossRef]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (Hmf) Levels in Honey and Other Food Products: Effects on Bees and Human Health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, X.; Liu, X.; Wu, Q.; Hou, J.; Su, P.; Guo, Q. Comparison of the Effects of 5-Hydroxymethylfurfural in Milk Powder Matrix and Standard Water on Oxidative Stress System of Zebrafish. Foods 2022, 11, 1814. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific Opinion on Flavouring Group Evaluation 13rev1: Furfuryl and Furan Derivatives with and without Additional Side-Chain Substituents and Heteroatoms from Chemical Group 14. EFSA J. 2010, 8, 1403. [Google Scholar]
- Ferrer, E.; Alegría, A.; Courtois, G.; Farré, R. High-Performance Liquid Chromatographic Determination of Mailard Compounds in Store-Brand and Name-Brand Ultra-High-Temperature-Treated Cows' Milk. J. Chromatogr. A 2000, 881, 599–606. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, X.; Tang, Y.; Xie, Y.; Du, Z. The Effects of Heat Treatment and Fermentation Processes on the Formation of Furfurals in Milk-Based Dairy Products Using a Quechers Technique Followed by Gas Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Food Chem. 2020, 313, 125930. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.; Su, J.; Li, L.; Hu, S.; Li, B.; Zhang, X.; Xu, Z.; Chen, T. In Vitro Antioxidant and Antiproliferative Activities of 5-Hydroxymethylfurfural. J. Agric. Food Chem. 2013, 61, 10604–10611. [Google Scholar] [CrossRef]
- Li, M.; Wu, L.; Zhao, T.; Wu, K.; Xiong, L. The Protective Role of 5-Hydroxymethyl-2-Furfural (5-Hmf) against Acute Hypobaric Hypoxia. Cell Stress Chaperones 2011, 16, 529–537. [Google Scholar] [CrossRef]
- Bauer-Marinovic, M.; Taugner, F.; Florian, S.; Glatt, H. Toxicity Studies with 5-Hydroxymethylfurfural and Its Metabolite 5-Sulphooxymethylfurfural in Wild-Type Mice and Transgenic Mice Expressing Human Sulphotransferases 1a1 and 1a2. Arch. Toxicol. 2012, 86, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, L.; Dong, Y.; Li, J.; Liu, X. Spectroscopic and Molecular Modeling Methods to Investigate the Interaction between 5-Hydroxymethyl-2-Furfural and Calf Thymus DNA Using Ethidium Bromide as a Probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 124, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Durling, L.J.K.; Busk, L.; Hellman, B.E. Evaluation of the DNA Damaging Effect of the Heat-Induced Food Toxicant 5-Hydroxymethylfurfural (Hmf) in Various Cell Lines with Different Activities of Sulfotransferases. Food Chem. Toxicol. 2009, 47, 880–884. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, L.; Liu, J.; Lin, S.; Yuan, Y. Detection of 5-Hydroxymethyl-2-Furfural Levels in Selected Chinese Foods by Ultra-High-Performance Liquid Chromatograph Analytical Method. Food Anal. Methods 2014, 7, 181–188. [Google Scholar] [CrossRef]
- Raofie, F.; Falsafi, Z. Development of a Bimetal-Organic Framework-Polypyrrole Composite as a Novel Fiber Coating for Direct Immersion Solid Phase Microextraction in Situ Supercritical Fluid Extraction Coupled with Gas Chromatography for Simultaneous Determination of Furfurals in Dates. Anal. Methods 2021, 13, 4941–4948. [Google Scholar] [PubMed]
- Sun, Y.; Guan, Z.; Cai, H.; Huang, Y.; Lin, Y.; Hu, X. Highly Sensitive Method for Aldehydes Detection: Application to Furfurals Analysis in Raisin and Bovine Milk Powder. Anal. Chim. Acta 2017, 987, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Rathod, R.V.; Bera, S.; Mondal, D. 5′-Hydroxymethyl Fluorescein: A Colorimetric Chemosensor for Naked-Eye Sensing of Cyanide Ion in a Biological Fluid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 238, 118419. [Google Scholar] [CrossRef]
- Upan, J.; Lerdsri, J.; Soongsong, J.; Mool-Am-Kha, P.; Sridara, T.; Reanpang, P.; Jakmunee, J. A Novel and Portable Electrochemical Sensor for 5-Hydroxymethylfurfural Detection Using Silver Microdendrite Electrodeposited Paper-Based Electrode. Analyst 2022, 147, 2170–2179. [Google Scholar] [CrossRef]
- Sheng, A.; Su, L.; Wang, J.; Xue, T.; Wang, P.; Zhang, J. Hydrazone Chemistry Mediated Toehold Strand Displacement Cascade and Its Application for 5-Hydroxymethylfurfural Analysis. Anal. Chim. Acta 2020, 1104, 110–116. [Google Scholar] [CrossRef]
- Jiang, N.; Li, P.; Sun, S.; Wei, W. A Ratiometric Fluorescence Sensor for 5-Hydroxymethylfurfural Detection Based on Strand Displacement Reaction. Talanta 2022, 238, 123029. [Google Scholar] [CrossRef]
- Alkhamis, O.; Canoura, J.; Yu, H.; Liu, Y.; Xiao, Y. Innovative Engineering and Sensing Strategies for Aptamer-Based Small-Molecule Detection. Trends Anal. Chem. 2019, 121, 115699. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In Vitro Selection of Rna Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Pang, X.; Cui, C.; Wan, S.; Jiang, Y.; Zhang, L.; Xia, L.; Li, L.; Li, X.; Tan, W. Bioapplications of Cell-Selex-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review. Cancers 2018, 10, 47. [Google Scholar] [CrossRef]
- Cho, E.J.; Lee, J.W.; Ellington, A.D. Applications of Aptamers as Sensors. Annu. Rev. Anal. Chem. 2009, 2, 241–264. [Google Scholar] [CrossRef] [PubMed]
- Algar, W.R.; Hildebrandt, N.; Vogel, S.S.; Medintz, I.L. Fret as a Biomolecular Research Tool—Understanding Its Potential While Avoiding Pitfalls. Nat. Methods 2019, 16, 815–829. [Google Scholar] [CrossRef]
- Huang, P.J.; Liu, J. Selection of Aptamers for Sensing Caffeine and Discrimination of Its Three Single Demethylated Analogues. Anal. Chem. 2022, 94, 3142–3149. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hou, Y.; Chen, S.; Liu, J. Controlling Dopamine Binding by the New Aptamer for a Fret-Based Biosensor. Biosens. Bioelectron. 2020, 173, 112798. [Google Scholar] [CrossRef]
- Fang, G.; Lv, Y.; Sheng, W.; Liu, B.; Wang, X.; Wang, S. Development of an enzyme-linked immunosorbent assay for the determination of 5-hydroxymethyl-2-furfural in food. Anal. Bioanal. Chem. 2011, 401, 3367–3373. [Google Scholar] [CrossRef]
- AlbalaHurtado, S.; VecianaNogues, M.T.; IzquierdoPulido, M.; VidalCarou, M.C. Determination of free and total furfural compounds in infant milk formulas by high-performance liquid chromatography. J. Agric. Food Chem. 1997, 45, 2128–2133. [Google Scholar] [CrossRef]
- Adu, J.K.; Amengor, C.D.K.; Orman, E.; Ibrahim, N.M.; Ifunanya, M.O.; Arthur, D.F. Development and Validation of UV-Visible Spectrophotometric Method for the Determination of 5-Hydroxymethyl Furfural Content in Canned Malt Drinks and Fruit Juices in Ghana. J. Food Qual. 2019, 2019, 1467053. [Google Scholar] [CrossRef]
- Kalal, H.S.; Mahani, M.K.; Maragheh, M.G.; Chaloosi, M. HPLC determination of furfural after preliminary extraction to aqueous phase. J. Liq. Chromatogr. Relat. Technol. 2007, 30, 2081–2093. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, S.H.; Ko, Y.; Park, J.C.; Ji, S.; Gu, M.B. The Sensitive Detection of Odam by Using Sandwich-Type Biosensors with a Cognate Pair of Aptamers for the Early Diagnosis of Periodontal Disease. Biosens. Bioelectron. 2019, 126, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Hu, W.; Zheng, X.; Cai, S.; Wu, J. Functionalized Aptamer with an Antiparallel G-Quadruplex: Structural Remodeling, Recognition Mechanism, and Diagnostic Applications Targeting Ctgf. Biosens. Bioelectron. 2019, 142, 111475. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Duan, N.; Wu, S.; Wang, Z. Selection and Application of Ssdna Aptamers against Spermine Based on Capture-Selex. Anal. Chim. Acta 2019, 1081, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Duan, N.; Sun, Y.; Zhou, Y.; Ma, P.; Wu, S.; Wang, Z. High-Affinity Aptamer of Allergen Β-Lactoglobulin: Selection, Recognition Mechanism and Application. Sens. Actuators B Chem. 2021, 340, 129956. [Google Scholar] [CrossRef]
- Biniuri, Y.; Luo, G.F.; Fadeev, M.; Wulf, V.; Willner, I. Redox-Switchable Binding Properties of the Atp-Aptamer. J. Am. Chem. Soc. 2019, 141, 15567–15576. [Google Scholar] [CrossRef]
- Le, A.T.H.; Krylova, S.M.; Krylov, S.N. Determination of the Equilibrium Constant and Rate Constant of Protein-Oligonucleotide Complex Dissociation under the Conditions of Ideal-Filter Capillary Electrophoresis. Anal. Chem. 2019, 91, 8532–8539. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, J.; Yang, L.; Gao, T.; Pei, R. In Vitro Selection of DNA Aptamers for the Development of Fluorescent Aptasensor for Sarcosine Detection. Sens. Actuators B Chem. 2018, 276, 128–135. [Google Scholar] [CrossRef]
- Zhu, Y.; Chandra, P.; Song, K.M.; Ban, C.; Shim, Y.B. Label-Free Detection of Kanamycin Based on the Aptamer-Functionalized Conducting Polymer/Gold Nanocomposite. Biosens. Bioelectron. 2012, 36, 29–34. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, T.; Ma, S.; Liu, Y.; Tian, Y.; Wang, R.; Jiang, Y.; Hou, D.; Wang, J. Fluorometric Determination of the Antibiotic Kanamycin by Aptamer-Induced Fret Quenching and Recovery between Mos2 Nanosheets and Carbon Dots. Microchim. Acta 2016, 184, 203–210. [Google Scholar] [CrossRef]
- Zadran, S.; Standley, S.; Wong, K.; Otiniano, E.; Amighi, A.; Baudry, M. Fluorescence Resonance Energy Transfer (Fret)-Based Biosensors: Visualizing Cellular Dynamics and Bioenergetics. Appl. Microbiol. Biotechnol. 2012, 96, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, N.; Yang, K.A.; Abendroth, J.M.; Cheung, K.M.; Xu, X.B.; Yang, H.Y.; Zhao, C.Z.; Zhu, B.W.; Rim, Y.S.; Yang, Y.; et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 2018, 362, 319–325. [Google Scholar] [CrossRef] [PubMed]
Name | Sequences (5′-3′) | Minimum Free Energy (kcal/mol) |
---|---|---|
H1 | GACGACGTAGCGGCGGTGTGGGCATTTTGGGCTAAAGTCGTCCCGATGCT | −6.13 |
H2 | GACGACTGTGGGCTGCCAAGGGCGCGTAGGGCGAAAGTCGTCCCGATGCT | −9.84 |
H3 | GACGACTAAGCGGCGGTGTGGGCATTTTGGGCTTTTGTCGTCCCGATGCT | −6.56 |
H7 | GACGACGTCCCGATGCTGCAATCGTAAACCCGTTATGTCGTCCCGATGCT | −4.15 |
H10 | GACGACTAGAGGGGGCCCGTTATTCGGTGATGTCTTGTCGTCCCGATGCT | −7.52 |
H1-8 | GACGACGTAGCGGCGGTGTGGGCATTTTGGGCTAAAGTCGTC | −5.9 |
H1-12 | CGACGTAGCGGCGGTGTGGGCATTTTGGGCTAAAGTCG | −3.16 |
H1-14 | GACGTAGCGGCGGTGTGGGCATTTTGGGCTAAAGTC | −0.99 |
H1-21 | GTAGCGGCGGTGTGGGCATTTTGGGCTAA | −0.95 |
Detection Method | Detection Time (min) | Linear Range (μM) | LOD (μM) | Reference |
---|---|---|---|---|
Enzyme-linked immunosorbent assay | 90 | 0.79–317 | 0.16 | [28] |
Ultra-high-performance liquid chromatography | - | 9.52–634.92 | 1.19–3.97 | [14] |
High-performance liquid chromatography | 70 (Including equilibrium time) | 0.79–79.37 | 0.08–0.40 | [29] |
UV-Visible Spectrophotometric Method | - | 7.94–158.73 | - | [30] |
High-performance liquid chromatography | 48 (Including equilibrium time) | 0.56–17.46 | 0.56 | [31] |
Biosensor | 35 | 0–75 | 11.80 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Hou, Y.; Qin, Y.; Cheng, J.; Hou, J.; Wu, Q.; Liu, Z. Selection of a Novel DNA Aptamer Specific for 5-Hydroxymethylfurfural Using Capture-SELEX. Biosensors 2023, 13, 564. https://doi.org/10.3390/bios13050564
Liu X, Hou Y, Qin Y, Cheng J, Hou J, Wu Q, Liu Z. Selection of a Novel DNA Aptamer Specific for 5-Hydroxymethylfurfural Using Capture-SELEX. Biosensors. 2023; 13(5):564. https://doi.org/10.3390/bios13050564
Chicago/Turabian StyleLiu, Xixia, Yingyu Hou, Yanlin Qin, Jiaxin Cheng, Jianjun Hou, Qin Wu, and Zhenmin Liu. 2023. "Selection of a Novel DNA Aptamer Specific for 5-Hydroxymethylfurfural Using Capture-SELEX" Biosensors 13, no. 5: 564. https://doi.org/10.3390/bios13050564
APA StyleLiu, X., Hou, Y., Qin, Y., Cheng, J., Hou, J., Wu, Q., & Liu, Z. (2023). Selection of a Novel DNA Aptamer Specific for 5-Hydroxymethylfurfural Using Capture-SELEX. Biosensors, 13(5), 564. https://doi.org/10.3390/bios13050564