Flexible Passive Sensor Patch with Contactless Readout for Measurement of Human Body Temperature
Abstract
:1. Introduction
2. System Description
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheshire, W.P., Jr. Thermoregulatory disorders and illness related to heat and cold stress. Auton. Neurosci. Basic Clin. 2016, 196, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Dolibog, P.; Pietrzyk, B.; Kierszniok, K.; Pawlicki, K. Comparative Analysis of Human Body Temperatures Measured with Noncontact and Contact Thermometers. Healthcare 2022, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Svantner, M.; Lang, V.; Skala, J.; Kohlschutter, T.; Honner, M.; Muzika, L.; Kosova, E. Possibilities and limits of human temperature measurement by thermographic methods. In Proceedings of the 2022 IEEE International Workshop on Metrology for Living Environment (MetroLivEn), Cosenza, Italy, 25–27 May 2022; pp. 29–33. [Google Scholar] [CrossRef]
- Su, Y.; Ma, C.; Chen, J.; Wu, H.; Luo, W.; Peng, Y.; Luo, Z.; Li, L.; Tan, Y.; Omisore, O.M.; et al. Printable, Highly Sensitive Flexible Temperature Sensors for Human Body Temperature Monitoring: A Review. Nanoscale Res. Lett. 2020, 15, 200. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, L.; Tao, X.; Ding, X. Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring. Adv. Heal. Mater. 2017, 6, 1601371. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Jamhour, N.; Hettinger, J.; Xue, W. Smart wearable flexible temperature sensor with compensation against bending and stretching effects. Sens. Actuators A Phys. 2023, 353, 114224. [Google Scholar] [CrossRef]
- Carr, A.R.; Chan, Y.J.; Reuel, N.F. Contact-Free, Passive, Electromagnetic Resonant Sensors for Enclosed Biomedical Applications: A Perspective on Opportunities and Challenges. ACS Sens. 2023, 8, 943–955. [Google Scholar] [CrossRef] [PubMed]
- TIDA-00721 Reference Design | TI.Com. Available online: https://www.ti.com/tool/TIDA-00721 (accessed on 4 May 2023).
- Hallil, H.; Dejous, C.; Hage-Ali, S.; Elmazria, O.; Rossignol, J.; Stuerga, D.; Talbi, A.; Mazzamurro, A.; Joubert, P.-Y.; Lefeuvre, E. Passive Resonant Sensors: Trends and Future Prospects. IEEE Sens. J. 2021, 21, 12618–12632. [Google Scholar] [CrossRef]
- Wang, H.; Totaro, M.; Veerapandian, S.; Ilyas, M.; Kong, M.; Jeong, U.; Beccai, L. Folding and Bending Planar Coils for Highly Precise Soft Angle Sensing. Adv. Mater. Technol. 2020, 5, 2000659. [Google Scholar] [CrossRef]
- dos Reis, D.D.; Castaldo, F.C.; Pichorim, S.F. Flexible Circuits for Moisture Measurement in Cylindrical Timber of Wood. In Proceedings of the 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Glasgow, UK, 8–10 July 2019. [Google Scholar] [CrossRef]
- Fotheringham, G.; Ohnimus, F.; Ndip, I.; Guttowski, S.; Reichl, H. Parameterization of bent coils on curved flexible surface substrates for RFID applications. In Proceedings of the 2009 59th Electronic Components and Technology Conference, San Diego, CA, USA, 26–29 May 2009; pp. 502–507. [Google Scholar] [CrossRef]
- Huang, Q.-A.; Dong, L.; Wang, L.-F. LC Passive Wireless Sensors Toward a Wireless Sensing Platform: Status, Prospects, and Challenges. J. Microelectromechanical Syst. 2016, 25, 822–841. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Y.; Chen, Q.; Wang, Y. A Passive Wireless Temperature Sensor for Harsh Environment Applications. Sensors 2008, 8, 7982–7995. [Google Scholar] [CrossRef] [PubMed]
- Demori, M.; Baù, M.; Ferrari, M.; Ferrari, V. Interrogation Techniques and Interface Circuits for Coil-Coupled Passive Sensors. Micromachines 2018, 9, 449. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Baù, M.; Tonoli, E. Piezoelectric resonant sensors with contactless interrogation for mass-sensitive and acoustic-load detection. Sens. Actuators A Phys. 2013, 202, 100–105. [Google Scholar] [CrossRef]
- Bau’, M.; Zini, M.; Nastro, A.; Ferrari, M.; Ferrari, V.; Lee, J.E.-Y. Electronic technique and system for non-contact reading of temperature sensors based on piezoelectric MEMS resonators. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; pp. 2409–2413. [Google Scholar] [CrossRef]
- Bau, M.; Ferrari, M.; Ferrari, V. Flexible Passive Temperature Sensor Label with Contactless Interrogation. In Proceedings of the 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Glasgow, UK, 8–10 July 2019. [Google Scholar] [CrossRef]
- Nopper, R.; Has, R.; Reindl, L. A Wireless Sensor Readout System—Circuit Concept, Simulation, and Accuracy. IEEE Trans. Instrum. Meas. 2011, 60, 2976–2983. [Google Scholar] [CrossRef]
- Park, J.-Y.; Choi, J.-W. Review—Electronic Circuit Systems for Piezoelectric Resonance Sensors. J. Electrochem. Soc. 2020, 167, 037560. [Google Scholar] [CrossRef]
- Zhang, G.; Tan, Q.; Lin, B.; Xiong, J. A Novel Temperature and Pressure Measuring Scheme Based on LC Sensor for Ultra-High Temperature Environment. IEEE Access 2019, 7, 162747–162755. [Google Scholar] [CrossRef]
- Ferrari, M.; Bau, M.; Pagnoni, M.; Ferrari, V. Compact DDS-based system for contactless interrogation of resonant sensors based on time-gated technique. In Proceedings of the SENSORS, 2014 IEEE, Valencia, Spain, 2–5 November 2014; pp. 907–910. [Google Scholar] [CrossRef]
- Jiang, H.; Chang, Z.-Y.; Pertijs, M.A.P. A 30 ppm < 80 nJ Ring-Down-Based Readout Circuit for Resonant Sensors. IEEE J. Solid State Circuits 2015, 51, 187–195. [Google Scholar] [CrossRef]
- Roy, S.; Chan, Y.J.; Reuel, N.F.; Neihart, N.M. Low-Cost Portable Readout System Design for Inductively Coupled Resonant Sensors. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zini, M.; Baù, M.; Nastro, A.; Ferrari, M.; Ferrari, V. Flexible Passive Sensor Patch with Contactless Readout for Measurement of Human Body Temperature. Biosensors 2023, 13, 572. https://doi.org/10.3390/bios13060572
Zini M, Baù M, Nastro A, Ferrari M, Ferrari V. Flexible Passive Sensor Patch with Contactless Readout for Measurement of Human Body Temperature. Biosensors. 2023; 13(6):572. https://doi.org/10.3390/bios13060572
Chicago/Turabian StyleZini, Marco, Marco Baù, Alessandro Nastro, Marco Ferrari, and Vittorio Ferrari. 2023. "Flexible Passive Sensor Patch with Contactless Readout for Measurement of Human Body Temperature" Biosensors 13, no. 6: 572. https://doi.org/10.3390/bios13060572
APA StyleZini, M., Baù, M., Nastro, A., Ferrari, M., & Ferrari, V. (2023). Flexible Passive Sensor Patch with Contactless Readout for Measurement of Human Body Temperature. Biosensors, 13(6), 572. https://doi.org/10.3390/bios13060572