Discriminating Glioblastoma from Peritumoral Tissue by a Nanohole Array-Based Optical and Label-Free Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Subjects
2.2. Clinical and Radiological Variables
2.3. Specimens Collection
2.4. Biosensor Optimization and Specimen Processing
2.5. Optical System and Setup
2.6. Pathological Anatomy
2.7. Statistical Analysis
3. Results
3.1. Demographics
3.2. Biosensor Performance
4. Discussion
4.1. Discrimination Capacity of the Biosensor
4.2. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro Oncol. 2021, 23, III1–III105. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Graus, F.; Bruna, J.; Pardo, J.; Escudero, D.; Vilas, D.; Barceló, I.; Brell, M.; Pascual, C.; Crespo, J.A.; Erro, E.; et al. Patterns of Care and Outcome for Patients with Glioblastoma Diagnosed during 2008-2010 in Spain. Neuro Oncol. 2013, 15, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Tejada Solís, S.; Plans Ahicart, G.; Iglesias Lozano, I.; de Quintana Schmidt, C.; Fernández Coello, A.; Hostalot Panisello, C.; Ley Urzaiz, L.; García Romero, J.C.; Díez Valle, R.; González Sánchez, J.; et al. Glioblastoma Treatment Guidelines: Consensus by the Spanish Society of Neurosurgery Tumor Section. Neurocirugia 2020, 31, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Velásquez, C.; Mansouri, S.; Mora, C.; Nassiri, F.; Suppiah, S.; Martino, J.; Zadeh, G.; Fernández-Luna, J.L. Molecular and Clinical Insights into the Invasive Capacity of Glioblastoma Cells. J. Oncol. 2019, 2019, 1740763. [Google Scholar] [CrossRef]
- Bastola, S.; Pavlyukov, M.S.; Yamashita, D.; Ghosh, S.; Cho, H.; Kagaya, N.; Zhang, Z.; Minata, M.; Lee, Y.; Sadahiro, H.; et al. Glioma-Initiating Cells at Tumor Edge Gain Signals from Tumor Core Cells to Promote Their Malignancy. Nat. Commun. 2020, 11, 4660. [Google Scholar] [CrossRef]
- Kubben, P.L.; ter Meulen, K.J.; Schijns, O.E.M.G.; ter Laak-Poort, M.P.; van Overbeeke, J.J.; van Santbrink, H. Intraoperative MRI-Guided Resection of Glioblastoma Multiforme: A Systematic Review. Lancet Oncol. 2011, 12, 1062–1070. [Google Scholar] [CrossRef]
- Wirtz, C.R.; Albert, F.K.; Schwaderer, M.; Heuer, C.; Staubert, A.; Tronnier, V.M.; Knauth, M.; Kunze, S. The Benefit of Neuronavigation for Neurosurgery Analyzed by Its Impact on Glioblastoma Surgery. Neurol. Res. 2000, 22, 354–360. [Google Scholar] [CrossRef]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J.; ALA-Glioma Study Group. Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: A Randomised Controlled Multicentre Phase III Trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Stummer, W.; Koch, R.; Valle, R.D.; Roberts, D.W.; Sanai, N.; Kalkanis, S.; Hadjipanayis, C.G.; Suero Molina, E. Intraoperative Fluorescence Diagnosis in the Brain: A Systematic Review and Suggestions for Future Standards on Reporting Diagnostic Accuracy and Clinical Utility. Acta Neurochir. 2019, 161, 2083–2098. [Google Scholar] [CrossRef]
- Acerbi, F.; Pollo, B.; De Laurentis, C.; Restelli, F.; Falco, J.; Vetrano, I.G.; Broggi, M.; Schiariti, M.; Tramacere, I.; Ferroli, P.; et al. Ex Vivo Fluorescein-Assisted Confocal Laser Endomicroscopy (CONVIVO® System) in Patients With Glioblastoma: Results From a Prospective Study. Front. Oncol. 2020, 10, 606574. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Liang, W.; Wang, S.; Festa, F.; Wiktor, P.; Wang, W.; Magee, M.; Labaer, J.; Tao, N. Measurement of Small Molecule Binding Kinetics on a Protein Microarray by Plasmonic-Based Electrochemical Impedance Imaging. Anal. Chem. 2014, 86, 9860–9865. [Google Scholar] [CrossRef] [PubMed]
- Soler, M.; Estévez, M.-C.; Cardenosa-Rubio, M.; Astua, A.; Lechuga, L.M. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens. 2020, 5, 2663–2678. [Google Scholar] [CrossRef]
- Zhou, X.L.; Yang, Y.; Wang, S.; Liu, X.W. Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging. Angew. Chem. Int. Ed. 2020, 59, 1776–1785. [Google Scholar] [CrossRef] [PubMed]
- Toma, K.; Kano, H.; Offenhäusser, A. Label-Free Measurement of Cell-Electrode Cleft Gap Distance with High Spatial Resolution Surface Plasmon Microscopy. ACS Nano 2014, 8, 12612–12619. [Google Scholar] [CrossRef]
- Escobedo, C. On-Chip Nanohole Array Based Sensing: A Review. Lab A Chip 2013, 13, 2445–2463. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, K.S.; Kim, W.M.; Sohn, Y.S. Detection of Amyloid-Β42 Using a Waveguide-Coupled Bimetallic Surface Plasmon Resonance Sensor Chip in the Intensity Measurement Mode. PLoS ONE 2014, 9, e98992. [Google Scholar] [CrossRef]
- Ertürk, G.; Özen, H.; Tümer, M.A.; Mattiasson, B.; Denizli, A. Microcontact Imprinting Based Surface Plasmon Resonance (SPR) Biosensor for Real-Time and Ultrasensitive Detection of Prostate Specific Antigen (PSA) from Clinical Samples. Sens. Actuators B Chem. 2016, 224, 823–832. [Google Scholar] [CrossRef]
- Mauriz, E.; Dey, P.; Lechuga, L.M. Advances in Nanoplasmonic Biosensors for Clinical Applications. Analyst 2019, 144, 7105–7129. [Google Scholar] [CrossRef]
- Franco, A.; Vidal, V.; Gómez, M.; Gutiérrez, O.; Martino, M.; González, F.; Moreno, F.; Fernández-Luna, J.L. A Label-Free Optical System with a Nanohole Array Biosensor for Discriminating Live Single Cancer Cells from Normal Cells. Nanophotonics 2021, 11, 315–328. [Google Scholar] [CrossRef]
- Barreda, Á.I.; Otaduy, D.; Martín-Rodríguez, R.; Merino, S.; Fernández-Luna, J.L.; González, F.; Moreno, F. Electromagnetic Behavior of Dielectric Objects on Metallic Periodically Nanostructured Substrates. Opt. Express 2018, 26, 11222–11237. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Otaduy, D.; Barreda, A.I.; Fernández-Luna, J.L.; Merino, S.; González, F.; Moreno, F. Optical Inspection of Manufactured Nanohole Arrays to Bridge the Lab-Industry Gap. Opt. Laser Technol. 2019, 116, 48–57. [Google Scholar] [CrossRef]
- Carcelen, M.; Vidal, V.; Franco, A.; Gomez, M.; Moreno, F.; Fernandez-Luna, J.L. Plasmonic Biosensing for Label-Free Detection of Two Hallmarks of Cancer Cells: Cell-Matrix Interaction and Cell Division. Biosensors 2022, 12, 674. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Martínez-Camblor, P.; Pardo-Fernández, J.C. The Youden Index in the Generalized Receiver Operating Characteristic Curve Context. Int. J. Biostat. 2019, 15, 20180060. [Google Scholar] [CrossRef]
- Park, Y.K.; Diez-Silva, M.; Popescu, G.; Lykotrafitis, G.; Choi, W.; Feld, M.S.; Suresh, S. Refractive Index Maps and Membrane Dynamics of Human Red Blood Cells Parasitized by Plasmodium Falciparum. Proc. Natl. Acad. Sci. USA 2008, 105, 13730–13735. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Chatterjee, S. Artefacts in Histopathology. J. Oral Maxillofac. Pathol. 2014, 18, 111–116. [Google Scholar] [CrossRef]
- Plesec, T.P.; Prayson, R.A. Frozen Section Discrepancy in the Evaluation of Central Nervous System Tumors. Arch. Pathol. Lab. Med. 2007, 131, 1532–1540. [Google Scholar] [CrossRef]
- Wei, L.; Roberts, D.W.; Sanai, N.; Liu, J.T.C. Visualization Technologies for 5-ALA-Based Fluorescence-Guided Surgeries. J. Neurooncol. 2019, 141, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Acerbi, F.; Broggi, M.; Schebesch, K.M.; Höhne, J.; Cavallo, C.; De Laurentis, C.; Eoli, M.; Anghileri, E.; Servida, M.; Boffano, C.; et al. Fluorescein-Guided Surgery for Resection of High-Grade Gliomas: A Multicentric Prospective Phase II Study (FLUOGLIO). Clin. Cancer Res. 2018, 24, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Restelli, F.; Bonomo, G.; Monti, E.; Broggi, G.; Acerbi, F.; Broggi, M. Safeness of Sodium Fluorescein Administration in Neurosurgery: Case-Report of an Erroneous Very High-Dose Administration and Review of the Literature. Brain Spine 2022, 2, 101703. [Google Scholar] [CrossRef] [PubMed]
- Kiesel, B.; Wadiura, L.I.; Mischkulnig, M.; Makolli, J.; Sperl, V.; Borkovec, M.; Freund, J.; Lang, A.; Millesi, M.; Berghoff, A.S.; et al. Efficacy, Outcome, and Safety of Elderly Patients with Glioblastoma in the 5-Ala Era: Single Center Experience of More than 10 Years. Cancers 2021, 13, 6119. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.; Hervey-Jumper, S.L.; Chang, S.; Molinaro, A.M.; McDermott, M.W.; Phillips, J.J.; Berger, M.S. A Prospective Phase II Clinical Trial of 5-Aminolevulinic Acid to Assess the Correlation of Intraoperative Fluorescence Intensity and Degree of Histologic Cellularity during Resection of High-Grade Gliomas. J. Neurosurg. 2016, 124, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.W.H.; Eljamel, S. Risk Factors for Developing Oral 5-Aminolevulenic Acid-Induced Side Effects in Patients Undergoing Fluorescence Guided Resection. Photodiagnosis Photodyn. Ther. 2013, 10, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Belykh, E.; Zhao, X.; Ngo, B.; Farhadi, D.S.; Byvaltsev, V.A.; Eschbacher, J.M.; Nakaji, P.; Preul, M.C. Intraoperative Confocal Laser Endomicroscopy Ex Vivo Examination of Tissue Microstructure During Fluorescence-Guided Brain Tumor Surgery. Front. Oncol. 2020, 10, 599250. [Google Scholar] [CrossRef]
- Xu, Y.; Abramov, I.; Belykh, E.; Mignucci-Jiménez, G.; Park, M.T.; Eschbacher, J.M.; Preul, M.C. Characterization of Ex Vivo and in Vivo Intraoperative Neurosurgical Confocal Laser Endomicroscopy Imaging. Front. Oncol. 2022, 12, 979748. [Google Scholar] [CrossRef]
- Dixon, L.; Lim, A.; Grech-Sollars, M.; Nandi, D.; Camp, S. Intraoperative Ultrasound in Brain Tumor Surgery: A Review and Implementation Guide. Neurosurg. Rev. 2022, 45, 2503–2515. [Google Scholar] [CrossRef]
- Mahboob, S.; McPhillips, R.; Qiu, Z.; Jiang, Y.; Meggs, C.; Schiavone, G.; Button, T.; Desmulliez, M.; Demore, C.; Cochran, S.; et al. Intraoperative Ultrasound-Guided Resection of Gliomas: A Meta-Analysis and Review of the Literature. World Neurosurg. 2016, 92, 255–263. [Google Scholar] [CrossRef]
- Blystad, I.; Marcel Warntjes, J.B.; Smedby, O.; Lundberg, P.; Larsson, E.M.; Tisell, A. Quantitative MRI for Analysis of Peritumoral Edema in Malignant Gliomas. PLoS ONE 2017, 12, e0177135. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.M.; Jones, P.S.; Weinberg, J.S. Intraoperative MRI for Brain Tumors. J. Neuro-Oncol. 2021, 151, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.; Samii, A.; Lawson McLean, A.C.; Bertalanffy, H.; Fahlbusch, R.; Samii, M.; Di Rocco, C. Intraoperative Magnetic Resonance Imaging in Pediatric Neurosurgery: Safety and Utility. J. Neurosurg. Pediatr. 2017, 19, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Rao, G. Intraoperative MRI and Maximizing Extent of Resection. Neurosurg. Clin. N. Am. 2017, 28, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Ogiwara, T.; Watanabe, G.; Hanaoka, Y.; Goto, T.; Hongo, K.; Horiuchi, T. Intraoperative Low-Field Magnetic Resonance Imaging-Guided Tumor Resection in Glioma Surgery: Pros and Cons. J. Nippon. Med. Sch. 2022, 89, 269–276. [Google Scholar] [CrossRef]
Case | Age | Sex | Side | Location | Aim of Surgery | Residual Tumor |
---|---|---|---|---|---|---|
1 | 71 | Female | Right | Frontal | Resection | No |
2 | 59 | Female | Right | Temporal | Biopsy | NA |
3 | 72 | Male | Right | Frontal | Biopsy | NA |
4 | 49 | Male | Right | Frontal | Resection | No |
5 | 75 | Female | Right | Frontal | Resection | Yes |
6 | 69 | Male | Right | Temporal | Biopsy | NA |
7 | 50 | Male | Left | Frontal | Resection | Yes |
8 | 71 | Male | Right | Frontal | Resection | No |
9 | 72 | Female | Right | Frontal | Biopsy | Yes |
10 | 71 | Female | Right | Parietal | Resection | NA |
11 | 48 | Male | Bilateral | Frontal | Biopsy | NA |
12 | 59 | Male | Right | Temporal | Resection | Yes |
13 | 58 | Female | Right | Temporal | Resection | Yes |
14 | 42 | Male | Right | Frontal | Resection | Yes |
15 | 69 | Male | Right | Occipital | Resection | No |
16 | 70 | Male | Right | Temporal | Resection | No |
17 | 76 | Female | Right | Frontal | Biopsy | NA |
18 | 73 | Male | Left | Frontal | Resection | No |
19 | 58 | Male | Left | Frontal | Biopsy | NA |
20 | 77 | Female | Left | Temporal | Resection | Yes |
21 | 66 | Male | Left | Occipital | Resection | No |
22 | 68 | Male | Left | Frontal | Resection | Yes |
23 | 71 | Female | Left | Parietal | Resection | No |
24 | 65 | Male | Right | Frontal | Resection | Yes |
25 | 51 | Male | Left | Frontal | Resection | No |
26 | 65 | Female | Right | Occipital | Resection | Yes |
27 | 68 | Male | Left | Temporal | Biopsy | NA |
28 | 49 | Male | Right | Frontal | Resection | Yes |
29 | 78 | Female | Right | Frontal | Resection | No |
30 | 68 | Male | Left | Occipital | Resection | Yes |
31 | 61 | Male | Right | Temporal | Resection | Yes |
Case | Peritumoral RI | Tumor RI | RI Difference | Peritumoral Histology * | Tumor Histology * |
---|---|---|---|---|---|
1 | 1.339 | 1.362 | POS | Peritumoral | GBM |
2 | 1.345 | 1.351 | POS | Peritumoral | GBM |
3 | 1.339 | 1.350 | POS | Peritumoral | GBM |
4 | 1.352 | 1.356 | POS | Peritumoral | GBM |
5 | 1.337 | 1.349 | POS | Peritumoral | GBM |
6 | 1.346 | 1.365 | POS | Peritumoral | GBM |
7 | 1.352 | 1.348 | NEG | GBM | GBM |
8 | 1.342 | 1.344 | NEG | GBM | GBM |
9 | 1.335 | 1.348 | POS | Peritumoral | GBM |
10 | 1.333 | 1.344 | POS | Peritumoral | GBM |
11 | 1.343 | 1.372 | POS | Peritumoral | GBM |
12 | 1.354 | 1.337 | NEG | Peritumoral | GBM |
13 | 1.339 | 1.350 | POS | Peritumoral | GBM |
14 | 1.335 | 1.344 | POS | Peritumoral | GBM |
15 | 1.336 | 1.334 | NEG | Peritumoral | GBM |
16 | 1.353 | 1.366 | POS | Peritumoral | GBM |
17 | 1.340 | 1.367 | POS | Peritumoral | GBM |
18 | 1.356 | 1.361 | POS | Peritumoral | GBM |
19 | 1.346 | 1.349 | POS | GBM | GBM |
20 | 1.341 | 1.344 | POS | Peritumoral | GBM |
21 | 1.349 | 1.368 | POS | Peritumoral | GBM |
22 | 1.345 | 1.343 | NEG | Peritumoral | GBM |
23 | 1.349 | 1.373 | POS | Peritumoral | GBM |
24 | 1.330 | 1.343 | POS | Peritumoral | GBM |
25 | 1.341 | 1.342 | NEG | Peritumoral | GBM |
26 | 1.481 | 1.399 | NEG | Peritumoral | GBM |
27 | 1.341 | 1.359 | POS | Peritumoral | GBM |
28 | 1.344 | 1.359 | POS | Peritumoral | GBM |
29 | 1.342 | 1.337 | NEG | GBM | GBM |
30 | 1.317 | 1.340 | POS | Peritumoral | GBM |
31 | 1.389 | 1.363 | NEG | GBM | GBM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Milán, V.; Franco, A.; Zvezdanova, M.E.; Marcos, S.; Martin-Laez, R.; Moreno, F.; Velasquez, C.; Fernandez-Luna, J.L. Discriminating Glioblastoma from Peritumoral Tissue by a Nanohole Array-Based Optical and Label-Free Biosensor. Biosensors 2023, 13, 591. https://doi.org/10.3390/bios13060591
García-Milán V, Franco A, Zvezdanova ME, Marcos S, Martin-Laez R, Moreno F, Velasquez C, Fernandez-Luna JL. Discriminating Glioblastoma from Peritumoral Tissue by a Nanohole Array-Based Optical and Label-Free Biosensor. Biosensors. 2023; 13(6):591. https://doi.org/10.3390/bios13060591
Chicago/Turabian StyleGarcía-Milán, Víctor, Alfredo Franco, Margarita Estreya Zvezdanova, Sara Marcos, Rubén Martin-Laez, Fernando Moreno, Carlos Velasquez, and José L. Fernandez-Luna. 2023. "Discriminating Glioblastoma from Peritumoral Tissue by a Nanohole Array-Based Optical and Label-Free Biosensor" Biosensors 13, no. 6: 591. https://doi.org/10.3390/bios13060591
APA StyleGarcía-Milán, V., Franco, A., Zvezdanova, M. E., Marcos, S., Martin-Laez, R., Moreno, F., Velasquez, C., & Fernandez-Luna, J. L. (2023). Discriminating Glioblastoma from Peritumoral Tissue by a Nanohole Array-Based Optical and Label-Free Biosensor. Biosensors, 13(6), 591. https://doi.org/10.3390/bios13060591