Coordinating Etching Inspired Synthesis of Fe(OH)3 Nanocages as Mimetic Peroxidase for Fluorescent and Colorimetric Self-Tuning Detection of Ochratoxin A
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of Fe(OH)3 Nanocages
2.2. Peroxidase Kinetics of the Fe(OH)3 Nanozyme
2.3. Preparation of Fe(OH)3@Ab2
2.4. The Construction of the Self-Tuning Immunoassay
3. Results and Discussion
3.1. Characterization of Fe(OH)3 Nanocages
3.2. Catalytic Activity of Fe(OH)3 Nanocages
3.3. Characterization of the Fe(OH)3@Ab2 Bioconjugate
3.4. The Feasibility of the Fe(OH)3 Nanocages-Induced Immunoassay
3.5. Self-Tuning Colorimetric and Fluorescence Immunoassay of OTA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weng, G.; Shen, X.; Li, J.; Wang, J.; Zhu, J.; Zhao, J. A plasmonic ELISA for multi-colorimetric sensing of C-reactive protein by using shell dependent etching of Ag coated Au nanobipyramids. Anal. Chim. Acta 2022, 1221, 340129. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, S.; Huo, Y.; Zhou, H.; Li, S.; Lin, X.; Kang, W.; Li, S.; Gao, Z. “Three-in-one” nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin. Anal. Chim. Acta 2022, 1222, 340178. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Du, J.; Wei, M.; Huang, Y.; Zhang, Y.; Wang, Y.; Li, J.; Wei, W.; Qiao, Y.; Dong, H.; et al. Colorimetric-photothermal-magnetic three-in-one lateral flow immunoassay for two formats of biogenic amines sensitive and reliable quantification. Anal. Chim. Acta 2022, 1239, 340660. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qian, Z.; Shen, C.; Gao, Z.; Tang, K.; Liu, Z.; Chen, Z. Colorimetric sensors for alkaloids based on the etching of Au@MnO2 nanoparticles and MnO2 nanostars. ACS Appl. Nano Mater. 2021, 4, 8465–8472. [Google Scholar] [CrossRef]
- He, Y.; Tian, F.; Zhou, J.; Zhao, Q.; Fu, R.; Jiao, B. Colorimetric aptasensor for ochratoxin A detection based on enzyme induced gold nanoparticle aggregation. J. Hazard. Mater. 2020, 1132, 101–109. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, F.; Prabhakar, A.; Qin, X.; Forzani, E.; Tao, N. Colorimetric sensor for online accurate detection of breath acetone. ACS Sens. 2020, 6, 450–453. [Google Scholar] [CrossRef]
- Mustafa, F.; Andreescu, S. Paper-based enzyme biosensor for one-step detection of hypoxanthine in fresh and degraded fish. ACS Sens. 2020, 5, 4092–4100. [Google Scholar] [CrossRef]
- Moon, J.; Kwon, H.; Yong, D.; Lee, I.C.; Kim, H.; Kang, H.; Lim, E.; Lee, K.; Jung, J.; Park, H.; et al. Colorimetric detection of SARS-CoV-2 and drug-resistant pH1N1 using CRISPR/dCas9. ACS Sens. 2020, 5, 4017–4026. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, L.; Liu, Y.; Liu, P.; Wang, W.; Luo, X. A morphology-based ultrasensitive multicolor colorimetric assay for detection of blood glucose by enzymatic etching of plasmonic gold nanobipyramids. Anal. Chim. Acta 2019, 1071, 53–58. [Google Scholar] [CrossRef]
- Imran, M.; Chen, M. Self-sensitized and reversible O2 reactivity with bisphenalenyls for simple, tunable, and multicycle colorimetric oxygen-sensing films. ACS Appl. Mater. Interfaces 2022, 14, 1817–1825. [Google Scholar] [CrossRef]
- Ding, L.; Shao, X.; Wang, M.; Zhan, H.; Lu, L. Dual-mode immunoassay for diethylstilbestrol based on peroxidase activity and photothermal effect of black phosphorus-gold nanoparticle nanohybrids. Anal. Chim. Acta 2022, 1187, 339171. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Cai, Y.; Qileng, A.; Quan, Z.; Zeng, W.; He, K.; Liu, Y. Template-assisted Cu2O@Fe(OH)3 yolk-shell nanocages as biomimetic peroxidase: A multi-colorimetry and ratiometric fluorescence separated-type immunosensor for the detection of ochratoxin A. J. Hazard. Mater. 2021, 411, 125090. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, X.; Zhu, R.; Wang, B.; Yang, J.; Xu, F.; Ramaswamy, S.; Zhang, X. Fe3+-doped aminated lignin as peroxidase-mimicking nanozymes for rapid and durable colorimetric detection of H2O2. ACS Sustain. Chem. Eng. 2021, 9, 12833–12843. [Google Scholar] [CrossRef]
- Feng, E.; Zheng, T.; Tian, Y. Dual-mode Au nanoprobe based on surface enhancement raman scattering and colorimetry for sensitive determination of telomerase activity both in cell extracts and the urine of patients. ACS Sens. 2019, 4, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Chen, H.M.; Chen, H.; Cui, Y.; Qileng, A.; Qin, W.; Liu, W.; Liu, Y. Multifunctional peroxidase-encapsulated nanoliposomes: Bioetching-induced photoelectrometric and colorimetric immunoassay for broad-spectrum detection of ochratoxins. ACS Appl. Mater. Interfaces 2019, 11, 23832–23839. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhu, H.; Zhou, W.; Qiu, Z.; Chen, C.; Qileng, A.; Li, K.; Liu, Y. Capsulation of AuNCs with AIE effect into metal-organic framework for the marriage of fluorescence and colorimetric biosensor to detect organophosphorus pesticides. Anal. Chem. 2021, 93, 7275–7282. [Google Scholar] [CrossRef]
- Wei, J.; Chang, W.; Qileng, A.; Liu, W.; Zhang, Y.; Rong, S.; Lei, H.; Liu, Y. Dual-modal split-type immunosensor for sensitive detection of microcystin-LR: Enzyme-induced photoelectrochemistry and colorimetry. Anal. Chem. 2018, 90, 9606–9613. [Google Scholar] [CrossRef]
- Li, D.; Li, N.; Zhao, L.; Xu, S.; Sun, Y.; Ma, P.; Song, D.; Wang, X. Colorimetric and fluorescent dual-mode measurement of blood glucose by organic silicon nanodots. ACS Appl. Nano. Mater. 2020, 3, 11600–11607. [Google Scholar] [CrossRef]
- Guo, Z.; Jia, Y.; Song, X.; Lu, J.; Lu, X.; Liu, B.; Han, J.; Huang, Y.; Zhang, J.; Chen, T. Giant gold nanowire vesicle-based colorimetric and SERS dual-mode immunosensor for ultrasensitive detection of vibrio parahemolyticus. Anal. Chem. 2018, 90, 6124–6130. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Li, J.; Lu, N.; Han, S.; Li, X.; Wang, M.; Cai, M.; Tang, Z.; Zhang, M. Construction of bio-nano interfaces on nanozymes for bioanalysis. ACS Appl. Mater. Interfaces 2021, 13, 21040–21050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, S.; Lu, X.; Wu, P.; Liu, J. Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 2019, 19, 3214–3220. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.; Li, S.; Tan, J.; Xu, C.; Huang, Y. MOF-derived Co3O4@Co-Fe oxide double-shelled nanocages as multi-functional specific peroxidase-like nanozyme catalysts for chemo/biosensing and dye degradation. Chem. Eng. J. 2020, 395, 125130. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, L.; Zhao, M.; Wang, Y. Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor. ACS Appl. Mater. Interfaces 2014, 6, 7090–7098. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Lian, J.; Gao, Y.; Guo, K.; Wu, K.; Guo, L.; Zhang, X.X.; Zhang, X.; Liu, Q.Y. Si doped CoO nanorods as peroxidase mimics for colorimetric sensing of reduced glutathione. ACS Sustainable Chem. Eng. 2019, 7, 13989–13998. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, Y.; Shen, T. Reduced graphene oxide-supported hollow Co3O4@N-doped porous carbon as peroxymonosulfate activator for sulfamethoxazole degradation. Chem. Eng. J. 2022, 430, 132951. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, M.; Zhu, H.; Zhang, M.; Li, X.; Wang, M.; Liu, B.; Pan, J.; Niu, X. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles. J. Hazard. Mater. 2022, 423, 127077. [Google Scholar] [CrossRef]
- Zheng, H.; Zeng, Y.; Chen, J.; Lin, R.; Zhuang, W.; Cao, R.; Lin, Z. Zr-based metal organic frameworks with intrinsic peroxidase-like activity for ultradeep oxidative desulfurization: Mechanism of H2O2 decomposition. Inorg. Chem. 2019, 58, 6983–6992. [Google Scholar] [CrossRef]
- Li, Z.; Ni, P.; Zhang, C.; Wang, B.; Duan, G.; Chen, C.; Jiang, Y.; Lu, Y. Carbon dots confined in N-doped carbon as peroxidase-like nanozyme for detection of gastric cancer relevant D-amino acids. Chem. Eng. J. 2022, 428, 131396. [Google Scholar] [CrossRef]
- Tang, L.; Li, J. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sens. 2017, 2, 857–875. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wu, S.; Hu, H.; Sun, J. Au nanostar@4-MBA@Au core-shell nanostructure coupled with exonuclease III-assisted cycling amplification for ultrasensitive SERS detection of ochratoxin A. ACS Sens. 2020, 5, 2636–2643. [Google Scholar] [CrossRef]
- Suea-Ngam, A.; Howes, P.D.; Stanley, C.E.; Demello, A.J. An exonuclease I-assisted silver-metallized electrochemical aptasensor for ochratoxin A detection. ACS Sens. 2019, 4, 1560–1568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, H.; Guo, L.; Zheng, K.; Han, X.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225. [Google Scholar] [CrossRef]
- Walker, M.; Harvey, A.J.; Sen, A.; Dessent, C.E. Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J. Phys. Chem. C 2013, 117, 12590–12600. [Google Scholar] [CrossRef] [PubMed]
- Chiodo, S.; Russo, N.; Sicilia, E. LANL2DZ basis sets recontracted in the framework of density functional theory. J. Chem. Phys. 2006, 125, 104107. [Google Scholar] [CrossRef]
- Tsuneda, T.; Taketsugu, T. Theoretical investigations on hydrogen peroxide decomposition in aquo. Phys. Chem. Chem. Phys. 2018, 38, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Nai, J.; Tian, Y.; Guan, X.; Guo, L. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.; Gerson, A.R.; Smart, R. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Xue, T.; Jiang, S.; Qu, Y.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C.; Kaner, R.; Huang, Y.; Duan, X. Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew. Chem. Int. Ed. 2012, 51, 3822–3825. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Lv, Y.; Hu, J.; Qi, L.; Hou, X. Simple, sensitive and on-line fuorescence monitoring of photodegradation of phenol and 2-naphthol. Luminescence 2007, 22, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Sayour, H.E.M.; Razek, T.M.A.; Fadel, K.F. Flow injection spectrofluorimetric determination of iron in industrial effluents based on fluorescence quenching of 1-naphthol-2-sulfonate. J. Fluoresc. 2011, 21, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wei, Q.; Yang, L.; Li, J.; Lu, T.; Liu, Z.; Zhong, G.; Weng, X.; Xu, X. Multimodal ochratoxin A-aptasensor using 3’-FAM-enhanced exonuclease I tool and magnetic microbead carrier. Anal. Chem. 2022, 94, 10921–10929. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, L.; Duan, N.; Wang, W.; Yu, Q.; Wang, Z. A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles. Mirochim. Acta 2018, 185, 497. [Google Scholar] [CrossRef]
- Hao, L.; Chen, J.; Chen, X.; Ma, T.; Cai, X.; Duan, H.; Leng, Y.; Huang, X.; Xiong, Y. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice. Food Chem. 2021, 336, 127710. [Google Scholar] [CrossRef]
- Lv, L.; Li, D.; Cui, C.; Zhao, Y.; Guo, Z. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Biosens. Bioelectron. 2017, 87, 136–141. [Google Scholar] [CrossRef]
- Wang, C.; Tan, R.; Chen, D. Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles. Talanta 2018, 182, 363–370. [Google Scholar] [CrossRef]
- Pacheco, J.; Castro, M.; Machado, S.; Barroso, M.F.; Nouws, H.P.A.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sensor. Actuat. B: Chem. 2015, 215, 107–112. [Google Scholar] [CrossRef]
- Hu, S.; Ouyang, W.; Guo, L.; Lin, Z.; Jiang, X.; Qiu, B.; Chen, G. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens. Bioelectron. 2017, 92, 718–723. [Google Scholar] [CrossRef]
- Zeng, H.L.; Ma, L.; Xia, X.H. G-quadruplex specific dye-based ratiometric FRET aptasensor for robust and ultrafast detection of toxin. Dyes Pigm. 2019, 164, 35–42. [Google Scholar] [CrossRef]
- Zhang, X.; Zhi, H.; Zhu, M.; Wang, F. Electrochemical/visual dual-readout aptasensor for ochratoxin A detection integrated into a miniaturized paper-based analytical device. Biosens. Bioelectron. 2021, 180, 113146. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, X.; Huang, H. Development of a novel label-free impedimetric electrochemical sensor based on hydrogel/chitosan for the detection of ochratoxin A. Talanta 2021, 226, 122183. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gong, M.; Jin, X.; Jiang, M.; Xu, J. A novel electrochemical sensor for ochratoxin A based on the hairpin aptamer and double report DNA via multiple signalamplification strategy. Sensor Actuat. B-Chem. 2019, 281, 595–601. [Google Scholar] [CrossRef]
- Guo, J.; Pan, L.; Wang, M.; Chen, L.; Zhao, X. Exogenous interference and autofluorescence-free ratiometric aptasensor for detection of OTA based on dual-colored persistent luminescence nanoparticles. Food Chem. 2023, 413, 135611. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Wang, B.; Liu, Y. Coordinating Etching Inspired Synthesis of Fe(OH)3 Nanocages as Mimetic Peroxidase for Fluorescent and Colorimetric Self-Tuning Detection of Ochratoxin A. Biosensors 2023, 13, 665. https://doi.org/10.3390/bios13060665
Zhu H, Wang B, Liu Y. Coordinating Etching Inspired Synthesis of Fe(OH)3 Nanocages as Mimetic Peroxidase for Fluorescent and Colorimetric Self-Tuning Detection of Ochratoxin A. Biosensors. 2023; 13(6):665. https://doi.org/10.3390/bios13060665
Chicago/Turabian StyleZhu, Hongshuai, Bingfeng Wang, and Yingju Liu. 2023. "Coordinating Etching Inspired Synthesis of Fe(OH)3 Nanocages as Mimetic Peroxidase for Fluorescent and Colorimetric Self-Tuning Detection of Ochratoxin A" Biosensors 13, no. 6: 665. https://doi.org/10.3390/bios13060665
APA StyleZhu, H., Wang, B., & Liu, Y. (2023). Coordinating Etching Inspired Synthesis of Fe(OH)3 Nanocages as Mimetic Peroxidase for Fluorescent and Colorimetric Self-Tuning Detection of Ochratoxin A. Biosensors, 13(6), 665. https://doi.org/10.3390/bios13060665