Non-Invasive and Label-Free On-Chip Impedance Monitoring of Heatstroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of the Chip
2.2. Cell Preparation (Human Umbilical Vein Endothelial Cells Culture)
2.3. Western Blotting
2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.5. Chip Circuit Model
2.6. Trans-Epithelial Electrical Resistance (TEER) and Capacitance of Cell-Cell Adhesion Measurement
2.7. Immunofluorescence Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Impedance Monitor
3.2. TEER, Cell-Cell Adhesion Capacitance Monitor
3.3. Immunofluorescence and qPCR Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouchama, A.; Abuyassin, B.; Lehe, C.; Laitano, O.; Jay, O.; O’Connor, F.G.; Leon, L.R. Classic and exertional heatstroke. Nat. Rev. Dis. Prim. 2022, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Gu, Z.T. Mechanism of endothelial cell heat injury and its effect on important organ functions. Chin. J. Lib. Army Med. 2017, 42, 271–278. [Google Scholar]
- Bouchama, A.; Roberts, G.; Al, M.F.; El-Sayed, R.; Lach, B.; Chollet-Martin, S.; Ollivier, V.; Al, B.R.; Loualich, A.; Nakeeb, S.; et al. Inflammatory, hemostatic, and clinical changes in a baboon experimental model for heatstroke. J. Appl. Physiol. 2005, 98, 697–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.M.; Hou, C.C.; Cheng, K.C.; Tian, R.L.; Chang, C.P.; Lin, M.T. Activated protein C therapy in a rat heat stroke model. Crit. Care Med. 2006, 34, 1960–1966. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.T.; Ghebeh, H.; Chishti, M.A.; Al-Mohanna, F.; El-Sayed, R.; Al-Mohanna, F.; Bouchama, A. Microvascular injury, thrombosis, inflammation, and apoptosis in the pathogenesis of heatstroke: A study in baboon model. Arter. Throm. Vas. 2008, 28, 1130–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aird, W.C. Endothelium as an organ system. Crit. Care Med. 2004, 32, S271–S279. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Shimizu, K.; Kokubu, Y.; Nishijima, M.; Takeda, S.; Ogura, H.; Kawabata, K. Effect of heat stress on blood-brain barrier integrity in iPS cell-derived microvascular endothelial cell models. PLoS ONE 2019, 14, e222113. [Google Scholar] [CrossRef]
- Yin, H.; Wu, M.; Lu, Y.; Wu, X.; Yu, B.; Chen, R.; Lu, J.; Tong, H. HMGB1-activatied NLRP3 inflammasome induces thrombocytopenia in heatstroke rat. PeerJ 2022, 10, e13799. [Google Scholar] [CrossRef]
- Costa, J.; Ahluwalia, A. Advances and Current Challenges in Intestinal in vitro Model Engineering: A Digest. Front. Bioeng. Biotechnol. 2019, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Henry, O.; Villenave, R.; Cronce, M.J.; Leineweber, W.D.; Benz, M.A.; Ingber, D.E. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip 2017, 17, 2264–2271. [Google Scholar] [CrossRef]
- Haque, M.R.; Rempert, T.H.; Al-Hilal, T.A.; Wang, C.; Bhushan, A.; Bishehsari, F. Organ-Chip Models: Opportunities for Precision Medicine in Pancreatic Cancer. Cancers 2021, 13, 4487. [Google Scholar] [CrossRef] [PubMed]
- Chiba, H.; Osanai, M.; Murata, M.; Kojima, T.; Sawada, N. Transmembrane proteins of tight junctions. Biochim. Biophys. Acta 2008, 1778, 588–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuse, M. Molecular basis of the core structure of tight junctions. Cold Spring Harb. Perspect. Biol. 2010, 2, a2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuse, M.; Hirase, T.; Itoh, M.; Nagafuchi, A.; Yonemura, S.; Tsukita, S.; Tsukita, S. Occludin: A novel integral membrane protein localizing at tight junctions. J. Cell Biol. 1993, 123, 1777–1788. [Google Scholar] [CrossRef] [PubMed]
- Furuse, M.; Fujita, K.; Hiiragi, T.; Fujimoto, K.; Tsukita, S. Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 1998, 141, 1539–1550. [Google Scholar] [CrossRef] [Green Version]
- Morita, K.; Furuse, M.; Fujimoto, K.; Tsukita, S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc. Natl. Acad. Sci. USA 1999, 96, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Tsukita, S.; Furuse, M. Occludin and claudins in tight-junction strands: Leading or supporting players? Trends Cell Biol. 1999, 9, 268–273. [Google Scholar] [CrossRef]
- Tsukita, S.; Furuse, M. Pores in the wall: Claudins constitute tight junction strands containing aqueous pores. J. Cell Biol. 2000, 149, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Heiskala, M.; Peterson, P.A.; Yang, Y. The roles of claudin superfamily proteins in paracellular transport. Traffic 2001, 2, 93–98. [Google Scholar] [CrossRef]
- Ikenouchi, J.; Furuse, M.; Furuse, K.; Sasaki, H.; Tsukita, S.; Tsukita, S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J. Cell Biol. 2005, 171, 939–945. [Google Scholar] [CrossRef]
- Stevenson, B.R.; Siliciano, J.D.; Mooseker, M.S.; Goodenough, D.A. Identification of ZO-1: A high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 1986, 103, 755–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thuenauer, R.; Rodriguez-Boulan, E.; Romer, W. Microfluidic approaches for epithelial cell layer culture and characterisation. Analyst 2014, 139, 3206–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primers | Primers’ Sequence |
---|---|
GAPDH-forward | GGAGCGAGATCCCTCCAAAAT |
GAPDH-reverse | GGCTGTTGTCATACTTCTCATGG |
occludin-forward | ACAAGCGGTTTTATCCAGAGTC |
occludin-reverse | ACAAGCGGTTTTATCCAGAGTC |
VE-Cadherin-forward | GTTCACGCATCGGTTGTTCAA |
VE-Cadherin-reverse | CGCTTCCACCACGATCTCATA |
ZO-1-forward | ATGTTGCTCTACACCCTGACC |
ZO-1-reverse | CCAGCACACACATAGATCCAGT |
Reagent | Volume (μL) |
---|---|
cDNA | 1 |
2.5 μM Primer Forward | 0.4 |
2.5 μM Primer Reverse | 0.4 |
Nuclease-Free Water | 3.2 |
2×SYBR Green | 5 |
Total volume | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Fan, W.; Liu, A.; Pan, S.; Xu, C.; Peng, H.; Yin, B.; Wang, X.; Dong, J.; Pan, Z. Non-Invasive and Label-Free On-Chip Impedance Monitoring of Heatstroke. Biosensors 2023, 13, 686. https://doi.org/10.3390/bios13070686
Zhao Y, Fan W, Liu A, Pan S, Xu C, Peng H, Yin B, Wang X, Dong J, Pan Z. Non-Invasive and Label-Free On-Chip Impedance Monitoring of Heatstroke. Biosensors. 2023; 13(7):686. https://doi.org/10.3390/bios13070686
Chicago/Turabian StyleZhao, Yueli, Weihua Fan, Anwei Liu, Shihua Pan, Chongxiao Xu, Hailun Peng, Bingling Yin, Xiaodong Wang, Jianhua Dong, and Zhiguo Pan. 2023. "Non-Invasive and Label-Free On-Chip Impedance Monitoring of Heatstroke" Biosensors 13, no. 7: 686. https://doi.org/10.3390/bios13070686
APA StyleZhao, Y., Fan, W., Liu, A., Pan, S., Xu, C., Peng, H., Yin, B., Wang, X., Dong, J., & Pan, Z. (2023). Non-Invasive and Label-Free On-Chip Impedance Monitoring of Heatstroke. Biosensors, 13(7), 686. https://doi.org/10.3390/bios13070686