Electrochemiluminescence of Semiconductor Quantum Dots and Its Biosensing Applications: A Comprehensive Review
Abstract
:1. Introduction
2. ECL System of QDs
2.1. QDs as ECL Luminophores
2.2. ECL Pathways of QDs
2.2.1. Annihilation ECL
2.2.2. Oxidative-Reductive ECL
2.2.3. Reductive-Oxidative ECL
3. Applications of QDs in ECL Biosensing
3.1. Immunoassay
3.1.1. Immunoassay Based on Antigen-Antibody Recognition
3.1.2. Immunoassay Based on DNA/RNA Aptamers
3.1.3. Multiplex Immunoassay
3.2. Nucleic Acid Analysis
3.2.1. Nucleic Acid Analysis Based on Sandwich Structures
3.2.2. Nucleic Acid Analysis Based on Recognition of Complementary Sequences
3.3. Small Molecules and Ions Detection
3.3.1. Target-Induced ECL Quenching
3.3.2. Coreactant Concentration-Dependent Biosensing Strategy
3.3.3. DNA Aptamer-Based Biosensing Strategy
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef] [PubMed]
- Miao, W. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev. 2008, 108, 2506–2553. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Xu, G. Applications and Trends in Electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304. [Google Scholar] [CrossRef]
- Guo, W.; Ding, H.; Gu, C.; Liu, Y.; Jiang, X.; Su, B.; Shao, Y. Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single Sample. J. Am. Chem. Soc. 2018, 140, 15904–15915. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ding, J.; Zhou, P.; Liu, J.; Qiao, Z.; Yu, K.; Jiang, J.; Su, B. Electrochemiluminescence Distance and Reactivity of Coreactants Determine the Sensitivity of Bead-Based Immunoassays. Angew. Chem. Int. Ed. 2023, 62, e202216525. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, W.; Xu, G. Recent Advances in Electrochemiluminescence. Chem. Soc. Rev. 2015, 44, 3117–3142. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Zhang, C. Electrogenerated Chemiluminescence Biosensing. Anal. Chem. 2020, 92, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Guo, W.; Su, B. Recent Advances in Electrochemiluminescence Imaging Analysis Based on Nanomaterials and Micro-/Nanostructures. Chin. Chem. Lett. 2019, 30, 1593–1599. [Google Scholar] [CrossRef]
- Ding, H.; Guo, W.; Su, B. Imaging Cell-Matrix Adhesions and Collective Migration of Living Cells by Electrochemiluminescence Microscopy. Angew. Chem. Int. Ed. 2020, 59, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Zhou, P.; Fu, W.; Ding, L.; Guo, W.; Su, B. Spatially Selective Imaging of Cell-Matrix and Cell-Cell Junctions by Electrochemiluminescence. Angew. Chem. Int. Ed. 2021, 60, 11769–11773. [Google Scholar] [CrossRef]
- Van Houten, J.; Watts, R.J. Temperature Dependence of the Photophysical and Photochemical Properties of the Tris(2,2′-bipyridyl)ruthenium(II) Ion in Aqueous Solution. J. Am. Chem. Soc. 1976, 98, 4853–4858. [Google Scholar] [CrossRef]
- Wu, P.; Hou, X.; Xu, J.; Chen, H. Electrochemically Generated versus Photoexcited Luminescence from Semiconductor Nanomaterials: Bridging the Valley between Two Worlds. Chem. Rev. 2014, 114, 11027–11059. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Bouffier, L.; Xu, G.; Loget, G.; Sojic, N. Electrochemiluminescence with Semiconductor (Nano)Materials. Chem. Sci. 2022, 13, 2528–2550. [Google Scholar] [CrossRef] [PubMed]
- Brus, L.E. Electron–Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. J. Chem. Phys. 1984, 80, 4403–4409. [Google Scholar] [CrossRef] [Green Version]
- Brus, L. Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory. J. Phys. Chem. 1986, 90, 2555–2560. [Google Scholar] [CrossRef]
- Pietryga, J.M.; Park, Y.-S.; Lim, J.; Fidler, A.F.; Bae, W.K.; Brovelli, S.; Klimov, V.I. Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chem. Rev. 2016, 116, 10513–10622. [Google Scholar] [CrossRef]
- Cao, Z.; Sun, H.; Su, B. Electrochemiluminescence of Quantum Dots: Research Progress and Future Perspectives. Chem. J. Chin. Univ. 2020, 41, 1945–1955. [Google Scholar]
- Ding, Z.; Quinn, B.M.; Haram, S.K.; Pell, L.E.; Korgel, B.A.; Bard, A.J. Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots. Science 2002, 296, 1293–1297. [Google Scholar] [CrossRef] [Green Version]
- Myung, N.; Ding, Z.; Bard, A.J. Electrogenerated Chemiluminescence of CdSe Nanocrystals. Nano Lett. 2002, 2, 1315–1319. [Google Scholar] [CrossRef]
- Myung, N.; Bae, Y.; Bard, A.J. Effect of Surface Passivation on the Electrogenerated Chemiluminescence of CdSe/ZnSe Nanocrystals. Nano Lett. 2003, 3, 1053–1055. [Google Scholar] [CrossRef]
- Bae, Y.; Myung, N.; Bard, A.J. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles. Nano Lett. 2004, 4, 1153–1161. [Google Scholar] [CrossRef]
- Myung, N.; Lu, X.; Johnston, K.P.; Bard, A.J. Electrogenerated Chemiluminescence of Ge Nanocrystals. Nano Lett. 2004, 4, 183–185. [Google Scholar] [CrossRef]
- Peng, X. An Essay on Synthetic Chemistry of Colloidal Nanocrystals. Nano Res. 2010, 2, 425–447. [Google Scholar] [CrossRef] [Green Version]
- Evariste, S.; Sandroni, M.; Rees, T.W.; Roldán-Carmona, C.; Gil-Escrig, L.; Bolink, H.J.; Baranoff, E.; Zysman-Colman, E. Fluorine-free blue-green emitters for light-emitting electrochemical cells. J. Mater. Chem. C 2014, 2, 5793–5804. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Hernandez, J.M.; Longhi, E.; Cysewski, R.; Polo, F.; Josel, H.-P.; De Cola, L. Photophysics and Electrochemiluminescence of Bright Cyclometalated Ir(III) Complexes in Aqueous Solutions. Anal. Chem. 2016, 88, 4174–4178. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Nie, L.; Zhang, B.; Zou, G. Spectrum-Resolved Triplex-Color Electrochemiluminescence Multiplexing Immunoassay with Highly-Passivated Nanocrystals as Tags. Anal. Chem. 2018, 90, 12361–12365. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Shu, Y.; Qin, H.; Su, B.; Peng, X. Quantum Dots with Highly Efficient, Stable, and Multicolor Electrochemiluminescence. ACS Cent. Sci. 2020, 6, 1129–1137. [Google Scholar] [CrossRef]
- Steigerwald, M.L.; Brus, L.E. Semiconductor Crystallites: A Class of Large Molecules. Acc. Chem. Res. 1990, 23, 183–188. [Google Scholar] [CrossRef]
- Zhu, H.; Song, N.; Lian, T. Controlling Charge Separation and Recombination Rates in CdSe/ZnS Type I Core–Shell Quantum Dots by Shell Thicknesses. J. Am. Chem. Soc. 2010, 132, 15038–15045. [Google Scholar] [CrossRef]
- Ding, T.X.; Olshansky, J.H.; Leone, S.R.; Alivisatos, A.P. Efficiency of Hole Transfer from Photoexcited Quantum Dots to Covalently Linked Molecular Species. J. Am. Chem. Soc. 2015, 137, 2021–2029. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Bao, L.; Hyun, B.R.; Bartnik, A.C.; Zhong, Y.; Reed, J.C.; Pang, D.; Abruña, H.D.; Malliaras, G.G.; Wise, F.W. Electrogenerated Chemiluminescence from PbS Quantum Dots. Nano Lett. 2009, 9, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B. Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. J. Am. Chem. Soc. 2009, 131, 4564–4565. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ji, J.; Fei, R.; Wang, C.; Lu, Q.; Zhang, J.; Jiang, L.; Zhu, J. A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Adv. Funct. Mater. 2012, 22, 2971–2979. [Google Scholar] [CrossRef]
- Huang, Y.; Fang, M.; Zou, G.; Zhang, B.; Wang, H. Monochromatic and Electrochemically Switchable Electrochemiluminescence of Perovskite CsPbBr3 Nanocrystals. Nanoscale 2016, 8, 18734–18739. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, F.; Yang, H.; Ge, S.; Yu, J.; Yan, M.; Song, X. Application of SnO2 Nanocrystal as Novel Electrochemiluminescence Signal Reporter for Sensitive Immunoassay with Nanoporous PtRu Alloy Enhancement. Sens. Actuators B 2014, 195, 423–430. [Google Scholar] [CrossRef]
- Xin, W.; Jiang, L.; Zong, L.; Zeng, H.; Shu, G.; Marks, R.; Zhang, X.; Shan, D. MoS2 Quantum Dots-Combined Zirconium-Metalloporphyrin Frameworks: Synergistic Effect on Electron Transfer and Application for Bioassay. Sens. Actuators B 2018, 273, 566–573. [Google Scholar] [CrossRef]
- Baker, D.R.; Kamat, P.V. Tuning the Emission of CdSe Quantum Dots by Controlled Trap Enhancement. Langmuir 2010, 26, 11272–11276. [Google Scholar] [CrossRef]
- Poznyak, S.K.; Talapin, D.V.; Shevchenko, E.V.; Weller, H. Quantum Dot Chemiluminescence. Nano Lett. 2004, 4, 693–698. [Google Scholar] [CrossRef]
- Zou, G.; Ju, H. Electrogenerated Chemiluminescence from a CdSe Nanocrystal Film and Its Sensing Application in Aqueous Solution. Anal. Chem. 2004, 76, 6871–6876. [Google Scholar] [CrossRef]
- Geng, J.; Liu, B.; Xu, L.; Hu, F.; Zhu, J. Facile Route to Zn-Based II–VI Semiconductor Spheres, Hollow Spheres, and Core/Shell Nanocrystals and Their Optical Properties. Langmuir 2007, 23, 10286–10293. [Google Scholar] [CrossRef]
- Ding, S.; Xu, J.; Chen, H. Enhanced Solid-State Electrochemiluminescence of CdS Nanocrystals Composited with Carbon Nanotubes in H2O2 Solution. Chem. Commun. 2006, 34, 3631–3633. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Chen, H. A New Electrochemiluminescence Emission of Mn2+-Doped ZnS Nanocrystals in Aqueous Solution. J. Phys. Chem. C 2008, 112, 17581–17585. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Yu, Y.; Zou, G. Bandgap Engineered and High Monochromatic Electrochemiluminescence from Dual-Stabilizers-Capped CdSe Nanocrystals with Practical Application Potential. Biosens. Bioelectron. 2014, 55, 203–208. [Google Scholar] [CrossRef]
- Deng, L.; Shan, Y.; Xu, J.; Chen, H. Electrochemiluminescence Behaviors of Eu3+-Doped CdS Nanocrystals Film in Aqueous Solution. Nanoscale 2012, 4, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.; Liang, G.; Zhang, X. Strong Anodic Near-Infrared Electrochemiluminescence from CdTe Quantum Dots at Low Oxidation Potentials. Chem. Commun. 2011, 47, 10115–10117. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, Y.; Xu, J.; Chen, H. Signal-On Electrochemiluminescence Biosensors Based on CdS–Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline and Acetylcholine. Adv. Funct. Mater. 2009, 19, 1444–1450. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Tang, L.; Chang, H.; Li, J. Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds. Anal. Chem. 2009, 81, 9710–9715. [Google Scholar] [CrossRef]
- Deng, S.; Lei, J.; Cheng, L.; Zhang, Y.; Ju, H. Amplified Electrochemiluminescence of Quantum Dots by Electrochemically Reduced Graphene Oxide for Nanobiosensing of Acetylcholine. Biosens. Bioelectron. 2011, 26, 4552–4558. [Google Scholar] [CrossRef]
- Geng, X.; Liu, D.; Hewa-Rahinduwage, C.C.; Brock, S.L.; Luo, L. Electrochemical Gelation of Metal Chalcogenide Quantum Dots: Applications in Gas Sensing and Photocatalysis. Acc. Chem. Res. 2023, 56, 1087–1096. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, G.; Gao, C.; Prudnikau, A.; Huebner, R.; Zhan, J.; Zou, G.; Eychmueller, A.; Cai, B. Interparticle Charge-Transport-Enhanced Electrochemiluminescence of Quantum-Dot Aerogels. Angew. Chem. Int. Ed. 2023, 62, e202214487. [Google Scholar]
- Kerr, E.; Doeven, E.H.; Barbante, G.J.; Hogan, C.F.; Bower, D.J.; Donnelly, P.S.; Connell, T.U.; Francis, P.S. Annihilation Electrogenerated Chemiluminescence of Mixed Metal Chelates in Solution: Modulating Emission Colour by Manipulating the Energetics. Chem. Sci. 2015, 6, 472–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Kutubi, H.; Voci, S.; Rassaei, L.; Sojic, N.; Mathwig, K. Enhanced Annihilation Electrochemiluminescence by Nanofluidic Confinement. Chem. Sci. 2018, 9, 8946–8950. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zou, X.; Ying, E.; Dong, S. Quantum Dot Electrochemiluminescence in Aqueous Solution at Lower Potential and Its Sensing Application. J. Phys. Chem. C 2008, 112, 4451–4454. [Google Scholar] [CrossRef]
- Mei, Y.; Wang, H.; Li, Y.; Pan, Z.; Jia, W. Electochemiluminescence of CdTe/CdS Quantum Dots with Triproprylamine as Coreactant in Aqueous Solution at a Lower Potential and Its Application for Highly Sensitive and Selective Detection of Cu2+. Electroanalysis 2010, 22, 155–160. [Google Scholar] [CrossRef]
- Hu, T.; Liu, X.; Liu, S.; Wang, Z.; Tang, Z. Toward Understanding of Transfer Mechanism between Electrochemiluminescent Dyes and Luminescent Quantum Dots. Anal. Chem. 2014, 86, 3939–3946. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Lin, L.; Huang, Y.; Lai, Z.; Li, F.; Wang, S.; Lin, F.; Li, J.; Wang, Y.; Chen, X. Unveiling the Interfacial Electrochemiluminescence Behavior of Lead Halide Perovskite Nanocrystals. Nanoscale Adv. 2019, 1, 3957–3962. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ju, H. Coreactant Enhanced Anodic Electrochemiluminescence of CdTe Quantum Dots at Low Potential for Sensitive Biosensing Amplified by Enzymatic Cycle. Anal. Chem. 2008, 80, 5377–5382. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, H.; Lei, J.; Ju, H. Anodic Electrochemiluminescence of CdTe Quantum Dots and Its Energy Transfer for Detection of Catechol Derivatives. Anal. Chem. 2007, 79, 8055–8060. [Google Scholar] [CrossRef]
- Hu, T.; Li, T.; Yuan, L.; Liu, S.; Wang, Z. Anodic Electrogenerated Chemiluminescence of Quantum Dots: Size and Stabilizer Matter. Nanoscale 2012, 4, 5447–5453. [Google Scholar] [CrossRef]
- Ushida, K.; Yoshida, Y.; Kozawa, T.; Tagawa, S.; Kira, A. Evidence of Oxidation of Aromatic Hydrocarbons by Chloromethyl Radicals: Reinvestigation of Intersolute Hole Transfer Using Pulse Radiolysis. J. Phys. Chem. A 1999, 103, 4680–4689. [Google Scholar] [CrossRef]
- Bao, L.; Sun, L.; Zhang, Z.; Jiang, P.; Wise, F.W.; Abruña, H.D.; Pang, D. Energy-Level-Related Response of Cathodic Electrogenerated-Chemiluminescence of Self-Assembled CdSe/ZnS Quantum Dot Films. J. Phys. Chem. C 2011, 115, 18822–18828. [Google Scholar] [CrossRef]
- Jie, G.; Liu, B.; Pan, H.; Zhu, J.; Chen, H. CdS Nanocrystal-Based Electrochemiluminescence Biosensor for the Detection of Low-Density Lipoprotein by Increasing Sensitivity with Gold Nanoparticle Amplification. Anal. Chem. 2007, 79, 5574–5581. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Xu, J.; Chen, H. Distance-Dependent Quenching and Enhancing of Electrochemiluminescence from a CdS:Mn Nanocrystal Film by Au Nanoparticles for Highly Sensitive Detection of DNA. Chem. Commun. 2009, 8, 905–907. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ju, H. Electrochemiluminescence Sensors for Scavengers of Hydroxyl Radical Based on Its Annihilation in CdSe Quantum Dots Film/Peroxide System. Anal. Chem. 2007, 79, 6690–6696. [Google Scholar] [CrossRef]
- Han, E.; Ding, L.; Lian, H.; Ju, H. Cytosensing and Dynamic Monitoring of Cell Surface Carbohydrate Expression by Electrochemiluminescence of Quantum Dots. Chem. Commun. 2010, 46, 5446–5448. [Google Scholar] [CrossRef] [PubMed]
- Nezammahalleh, H.; Ghanati, F.; Rezaei, S.; Badshah, M.A.; Park, J.; Abbas, N.; Ali, A. Biochemical Interactions through Microscopic Techniques: Structural and Molecular Characterization. Polymers 2022, 14, 2853. [Google Scholar] [CrossRef]
- Yang, Y.X.; Wang, P.; Zhu, B.T. Binding affinity prediction for antibody-protein antigen complexes: A machine learning analysis based on interface and surface areas. J. Mol. Graphics Modell. 2023, 118, 108364. [Google Scholar] [CrossRef]
- Jie, G.; Huang, H.; Sun, X.; Zhu, J. Electrochemiluminescence of CdSe Quantum Dots for Immunosensing of Human Prealbumin. Biosens. Bioelectron. 2008, 23, 1896–1899. [Google Scholar] [CrossRef]
- Jie, G.; Li, L.; Chen, C.; Xuan, J.; Zhu, J. Enhanced Electrochemiluminescence of CdSe Quantum Dots Composited with CNTs and PDDA for Sensitive Immunoassay. Biosens. Bioelectron. 2009, 24, 3352–3358. [Google Scholar] [CrossRef]
- Ji, J.; He, L.; Shen, Y.; Hu, P.; Li, X.; Jiang, L.; Zhang, J.; Li, L.; Zhu, J. High-Efficient Energy Funneling Based on Electrochemiluminescence Resonance Energy Transfer in Graded-Gap Quantum Dots Bilayers for Immunoassay. Anal. Chem. 2014, 86, 3284–3290. [Google Scholar] [CrossRef]
- Tong, X.; Sheng, P.; Yan, Z.; ThanhThuy Tran, T.; Wang, X.; Cai, J.; Cai, Q. Core/Shell(Thick) CdTe/CdS Quantum Dots Functionalized TiO2 Nanotube: A Novel Electrochemiluminescence Platform for Label-Free Immunosensor to Detect Tris-(2,3-dibromopropyl) Isocyanurate in Environment. Sens. Actuators B 2014, 198, 41–48. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Y.; Liu, X.; Wei, Y.; Mao, C.; Chen, J.; Niu, H.; Song, J.; Zhang, S.; Jin, B.; et al. A Facile in Situ Synthesis of MIL-101-CdSe Nanocomposites for Ultrasensitive Electrochemiluminescence Detection of Carcinoembryonic Antigen. Sens. Actuators B 2017, 242, 1073–1078. [Google Scholar] [CrossRef]
- Wang, S.; Harris, E.; Shi, J.; Chen, A.; Parajuli, S.; Jing, X.; Miao, W. Electrogenerated Chemiluminescence Determination of C-Reactive Protein with Carboxyl CdSe/ZnS Core/Shell Quantum Dots. Phys. Chem. Chem. Phys. 2010, 12, 10073–10080. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Liu, S.; Zou, G.; Zhang, X. Ultrasensitive Immunoassay Based on Anodic Near-Infrared Electrochemiluminescence from Dual-Stabilizer-Capped CdTe Nanocrystals. Anal. Chem. 2012, 84, 10645–10649. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, X.; Zhang, B.; Miao, W.; Zou, G. Spectrum-Based Electrochemiluminescent Immunoassay with Ternary CdZnSe Nanocrystals as Labels. Anal. Chem. 2016, 88, 6947–6953. [Google Scholar] [CrossRef]
- Liang, X.; Bao, N.; Luo, X.; Ding, S. CdZnTeS Quantum Dots Based Electrochemiluminescent Image Immunoanalysis. Biosens. Bioelectron. 2018, 117, 145–152. [Google Scholar] [CrossRef]
- Gao, X.; Fu, K.; Fu, L.; Wang, H.; Zhang, B.; Zou, G. Red-Shifted Electrochemiluminescence of CdTe Nanocrystals Via Co2+-Doping and Its Spectral Sensing Application in Near-Infrared Region. Biosens. Bioelectron. 2020, 150, 111880. [Google Scholar] [CrossRef]
- O’Connor, S.; Al Hassan, L.; Brennan, G.; McCarthy, K.; Silien, C.; Liu, N.; Kennedy, T.; Ryan, K.; O’Reilly, E. Cadmium selenide sulfide quantum dots with tuneable emission profiles: An electrochemiluminescence platform for the determination of TIMP-1 protein. Bioelectrochemistry 2022, 148, 108221. [Google Scholar] [CrossRef]
- Wang, B.; Wang, C.; Li, Y.; Liu, X.; Wu, D.; Wei, Q. Electrochemiluminescence Biosensor for Cardiac Troponin I with Signal Amplification Based on A MoS2@Cu2O-Ag-modified Electrode and Ce:ZnO-NGQDs. Analyst 2022, 147, 4768–4776. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, S. Sandwich-structured electrogenerated chemiluminescence immunosensor based on dual-stabilizers-capped CdTe quantum dots as Signal Probes and Fe3O4-Au Nanocomposites as Magnetic Separable Carriers. Sens. Actuators B 2017, 240, 1123–1133. [Google Scholar] [CrossRef]
- Pan, D.; Chen, K.; Zhou, Q.; Zhao, J.; Xue, H.; Zhang, Y.; Shen, Y. Engineering of CdTe/SiO2 Nanocomposites: Enhanced Signal Amplification and Biocompatibility for Electrochemiluminescent Immunoassay of Alpha-Fetoprotein. Biosens. Bioelectron. 2019, 131, 178–184. [Google Scholar] [CrossRef]
- Shen, C.; Li, Y.; Li, Y.; Wang, S.; Li, Y.; Tang, F.; Wang, P.; Liu, H.; Li, Y.; Liu, Q. A Double Reaction System Induced Electrochemiluminescence Enhancement Based on SnS2 QDs@MIL-101 for Ultrasensitive Detection of CA242. Talanta 2022, 247, 123575. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Yang, J.; Luo, Z.; Qin, D.; Wu, Y.; Deng, B. A Dual-Emitting Immunosensor Based on Manganese Dioxide Nanoflowers and Zinc Sulfide Quantum Dots with Enhanced Electrochemiluminescence Performance for the Ultrasensitive Detection of Procalcitonin. Analyst 2023, 148, 2122–2132. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Xu, J.; Chen, H. Electrochemiluminescence Quenching by CdTe Quantum Dots through Energy Scavenging for Ultrasensitive Detection of Antigen. Chem. Commun. 2010, 46, 5079–5081. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Lei, J.; Huang, Y.; Cheng, Y.; Ju, H. Electrochemiluminescent Quenching of Quantum Dots for Ultrasensitive Immunoassay through Oxygen Reduction Catalyzed by Nitrogen-Doped Graphene-Supported Hemin. Anal. Chem. 2013, 85, 5390–5396. [Google Scholar] [CrossRef]
- Hu, L.; Song, C.; Shi, T.; Cui, Q.; Yang, L.; Li, X.; Wu, D.; Ma, H.; Zhang, Y.; Wei, Q.; et al. Dual-Quenching Electrochemiluminescence Resonance Energy Transfer System from IRMOF-3 Coreaction Accelerator Enriched Nitrogen-Doped GQDs to ZnO@Au for Sensitive Detection of Procalcitonin. Sens. Actuators B 2021, 346, 130495. [Google Scholar] [CrossRef]
- Guo, Z.; Hao, T.; Wang, S.; Gan, N.; Li, X.; Wei, D. Electrochemiluminescence Immunosensor for the Determination of Ag Alpha Fetoprotein Based on Energy Scavenging of Quantum Dots. Electrochem. Commun. 2012, 14, 13–16. [Google Scholar] [CrossRef]
- Yang, M.; Chen, Y.; Xiang, Y.; Yuan, R.; Chai, Y. In Situ Energy Transfer Quenching of Quantum Dot Electrochemiluminescence for Sensitive Detection of Cancer Biomarkers. Biosens. Bioelectron. 2013, 50, 393–398. [Google Scholar] [CrossRef]
- Lin, D.; Wu, J.; Yan, F.; Deng, S.; Ju, H. Ultrasensitive Immunoassay of Protein Biomarker Based on Electrochemiluminescent Quenching of Quantum Dots by Hemin Bio-Bar-Coded Nanoparticle Tags. Anal. Chem. 2011, 83, 5214–5221. [Google Scholar] [CrossRef]
- Lee, S.J.; Cho, J.; Lee, B.H.; Hwang, D.; Park, J.W. Design and Prediction of Aptamers Assisted by In Silico Methods. Biomedicines 2023, 11, 356. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.-N.; Zhang, H.; Li, X.; Zhao, Y. Advances in Optical Fiber Aptasensor for Biochemical Sensing Applications. Adv. Mater. Technol. 2023, 2300137. [Google Scholar] [CrossRef]
- Huang, H.; Jie, G.; Cui, R.; Zhu, J. DNA Aptamer-Based Detection of Lysozyme by an Electrochemiluminescence Assay Coupled to Quantum Dots. Electrochem. Commun. 2009, 11, 816–818. [Google Scholar] [CrossRef]
- Zhao, H.; Liang, R.; Wang, J.; Qiu, J. A Dual-Potential Electrochemiluminescence Ratiometric Approach Based on Graphene Quantum Dots and Luminol for Highly Sensitive Detection of Protein Kinase Activity. Chem. Commun. 2015, 51, 12669–12672. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Wang, J.; Peng, Y.; Zhu, J. A Novel Aptasensor for Lysozyme Based on Electrogenerated Chemiluminescence Resonance Energy Transfer between Luminol and Silicon Quantum Dots. Biosens. Bioelectron. 2017, 94, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Gai, Z.; Li, F.; Yang, X. Electrochemiluinescence Monitoring the Interaction between Human Serum Albumin and Amyloid-β Peptide. Bioelectrochemistry 2023, 149, 108315. [Google Scholar] [CrossRef]
- Jie, G.; Yuan, J. Novel Magnetic Fe3O4@CdSe Composite Quantum Dot-Based Electrochemiluminescence Detection of Thrombin by a Multiple DNA Cycle Amplification Strategy. Anal. Chem. 2012, 84, 2811–2817. [Google Scholar] [CrossRef]
- Wang, C.; Wu, T.; Miao, X.; Wang, P.; Feng, Q. A Dual-Stimuli Responsive Electrochemiluminescence Biosensor for Pathogenic Bacterial Sensing and Killing in Foods. Talanta 2023, 253, 124074. [Google Scholar] [CrossRef]
- Shao, K.; Wang, B.; Nie, A.; Ye, S.; Ma, J.; Li, Z.; Lv, Z.; Han, H. Target-Triggered Signal-On Ratiometric Electrochemiluminescence Sensing of PSA Based on MOF/Au/G-Quadruplex. Biosens. Bioelectron. 2018, 118, 160–166. [Google Scholar] [CrossRef]
- Guo, Z.; Hao, T.; Du, S.; Chen, B.; Wang, Z.; Li, X.; Wang, S. Multiplex Electrochemiluminescence Immunoassay of Two Tumor Markers Using Multicolor Quantum Dots as Labels and Graphene as Conducting Bridge. Biosens. Bioelectron. 2013, 44, 101–107. [Google Scholar] [CrossRef]
- Zhou, B.; Zhu, M.; Hao, Y.; Yang, P. Potential-Resolved Electrochemiluminescence for Simultaneous Determination of Triple Latent Tuberculosis Infection Markers. ACS Appl. Mater. Interfaces 2017, 9, 30536–30542. [Google Scholar] [CrossRef]
- Zou, G.; Tan, X.; Long, X.; He, Y.; Miao, W. Spectrum-Resolved Dual-Color Electrochemiluminescence Immunoassay for Simultaneous Detection of Two Targets with Nanocrystals as Tags. Anal. Chem. 2017, 89, 13024–13029. [Google Scholar] [CrossRef] [PubMed]
- Babamiri, B.; Hallaj, R.; Salimi, A. Ultrasensitive Electrochemiluminescence Immunoassay for Simultaneous Determination of CA125 and CA15-3 Tumor Markers Based on Pamam-Sulfanilic Acid-Ru(bpy)32+ and PAMAM-CdTe@CdS Nanocomposite. Biosens. Bioelectron. 2018, 99, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, Y.; Xia, Y.; Zhao, F.; Zeng, B. Simultaneous Detection of Ovarian Cancer-Concerned HE4 and CA125 Markers Based on Cu Single-Atom-Triggered CdS QDs and Eu MOF@Isoluminol ECL. Anal. Chem. 2023, 95, 4795–4802. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, R.; Ding, Y.; Zhang, X.; Jin, W. Electrochemiluminescence of CdTe Quantum Dots as Labels at Nanoporous Gold Leaf Electrodes for Ultrasensitive DNA Analysis. Talanta 2010, 80, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Ding, S. Dual-Signal-Amplified Electrochemiluminescence Biosensor for Microrna Detection by Coupling Cyclic Enzyme with CdTe QDs Aggregate as Luminophor. Biosens. Bioelectron. 2019, 134, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liu, H.; Zhang, M.; Yu, J.; Wang, S.; Lu, J. Ultrasensitive Electrochemiluminescence Detection of Lengthy DNA Molecules Based on Dual Signal Amplification. Analyst 2013, 138, 3463–3469. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Q.; Xu, J.; Chen, H. Silver Nanoclusters for High-Efficiency Quenching of CdS Nanocrystal Electrochemiluminescence and Sensitive Detection of microRNA. ACS Appl. Mater. Interfaces 2015, 7, 26307–26314. [Google Scholar] [CrossRef]
- Huang, Y.; Lei, J.; Cheng, Y.; Ju, H. Ratiometric Electrochemiluminescent Strategy Regulated by Electrocatalysis of Palladium Nanocluster for Immunosensing. Biosens. Bioelectron. 2016, 77, 733–739. [Google Scholar] [CrossRef]
- Li, Z.; Lin, Z.; Wu, X.; Chen, H.; Chai, Y.; Yuan, R. Highly Efficient Electrochemiluminescence Resonance Energy Transfer System in One Nanostructure: Its Application for Ultrasensitive Detection of MicroRNA in Cancer Cells. Anal. Chem. 2017, 89, 6029–6035. [Google Scholar] [CrossRef]
- Zhao, J.; He, Y.; Tan, K.; Yang, J.; Chen, S.; Yuan, R. Novel Ratiometric Electrochemiluminescence Biosensor Based on BP-CdTe QDs with Dual Emission for Detecting MicroRNA-126. Anal. Chem. 2021, 93, 12400–12408. [Google Scholar] [CrossRef]
- Zhu, L.; Ye, J.; Yan, M.; Yu, L.; Peng, Y.; Huang, J.; Yang, X. Sensitive and Programmable “Signal-Off” Electrochemiluminescence Sensing Platform Based on Cascade Amplification and Multiple Quenching Mechanisms. Anal. Chem. 2021, 93, 2644–2651. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Sun, M.; Yuan, R.; Chai, Y. Highly Efficient Electrochemiluminescence of MnS:CdS@ZnS Core-Shell Quantum Dots for Ultrasensitive Detection of MicroRNA. Anal. Chem. 2022, 94, 6874–6881. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Liu, Y.; Pan, M.; Tao, X.; Chen, Y.; Ma, P.; Zhuo, Y.; Song, D. AgInZnS Quantum Dots as Anodic Emitters with Strong and Stable Electrochemiluminescence for Biosensing Application. Biosens. Bioelectron. 2023, 228, 115219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, F.; Ge, S.; Zhang, L.; Zhang, Z.; Liu, Y.; Zhang, Y.; Ge, S.; Yu, J. Programmable T-Junction Structure-Assisted CRISPR/Cas12a Electrochemiluminescence Biosensor for Detection of Sa-16S rDNA. ACS Appl. Mater. Interfaces 2023, 15, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, Y.; Shen, Z.; Liu, J.; Yuan, R.; Chai, Y. AgAuS Quantum Dots as a Highly Efficient Near-Infrared Electrochemiluminescence Emitter for the Ultrasensitive Detection of MicroRNA. Anal. Chem. 2023, 95, 9314–9322. [Google Scholar] [CrossRef]
- Cha, T.G.; Pan, J.; Chen, H.; Robinson, H.N.; Li, X.; Mao, C.; Choi, J.H. Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation. J. Am. Chem. Soc. 2015, 137, 9429–9437. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, J.; Tee, S.R.; Sreelatha, S.; Loh, I.Y.; Wang, Z. Biomimetic Autonomous Enzymatic Nanowalker of High Fuel Efficiency. ACS Nano 2016, 10, 5882–5890. [Google Scholar] [CrossRef]
- Xu, Z.; Liao, L.; Chai, Y.; Wang, H.; Yuan, R. Ultrasensitive Electrochemiluminescence Biosensor for MicroRNA Detection by 3D DNA Walking Machine Based Target Conversion and Distance-Controllable Signal Quenching and Enhancing. Anal. Chem. 2017, 89, 8282–8287. [Google Scholar] [CrossRef]
- Ge, J.; Li, C.; Zhao, Y.; Yu, X.; Jie, G. Versatile “On-Off” Biosensing of Thrombin and Mirna Based on Ag(I) Ion-Enhanced or Ag Nanocluster-Quenched Electrochemiluminescence Coupled with Hybridization Chain Reaction Amplification. Chem. Commun. 2019, 55, 7350–7353. [Google Scholar] [CrossRef]
- Sun, M.; Liu, J.; Chai, Y.; Zhang, J.; Tang, Y.; Yuan, R. Three-Dimensional Cadmium Telluride Quantum Dots-DNA Nanoreticulation as a Highly Efficient Electrochemiluminescent Emitter for Ultrasensitive Detection of MicroRNA from Cancer Cells. Anal. Chem. 2019, 91, 7765–7773. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Y.; Liu, J.; Xu, J.; Chen, H. Electrochemiluminescence Resonance Energy Transfer Between CdS:Eu Nancrystals and Au Nanorods for Sensitive DNA Detection. J. Phys. Chem. C 2012, 116, 17773–17780. [Google Scholar] [CrossRef]
- Dong, Y.; Peng, Y.; Wang, J.; Zhu, J. Electrogenerated Chemiluminescence of Si Quantum Dots in Neutral Aqueous Solution and Its Biosensing Application. Biosens. Bioelectron. 2017, 89, 1053–1058. [Google Scholar] [CrossRef]
- Deng, S.; Cheng, L.; Lei, J.; Cheng, Y.; Huang, Y.; Ju, H. Label-Free Electrochemiluminescent Detection of DNA by Hybridization with a Molecular Beacon to Form Hemin/G-Quadruplex Architecture for Signal Inhibition. Nanoscale 2013, 5, 5435–5441. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Qin, L.; Dou, B.; Han, X.; Wang, P. Plasmon-Tunable Ag@Au Bimetallic Core-Shell Nanostructures to Enhance the Electrochemiluminescence of Quantum Dots for MicroRNA Sensing. ACS Appl. Nano Mater. 2022, 5, 16325–16331. [Google Scholar] [CrossRef]
- Cui, R.; Gu, Y.; Bao, L.; Zhao, J.; Qi, B.; Zhang, Z.; Xie, Z.; Pang, D. Near-Infrared Electrogenerated Chemiluminescence of Ultrasmall Ag2Se Quantum Dots for the Detection of Dopamine. Anal. Chem. 2012, 84, 8932–8935. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, X.; Yu, Y.; Zou, G. A Monochromatic Electrochemiluminescence Sensing Strategy for Dopamine with Dual-Stabilizers-Capped CdSe Quantum Dots as Emitters. Anal. Chem. 2014, 86, 2784–2788. [Google Scholar] [CrossRef]
- Mo, G.; He, X.; Zhou, C.; Ya, D.; Feng, J.; Yu, C.; Deng, B. Sensitive Detection of Hydroquinone Based on Electrochemiluminescence Energy Transfer between the Exited ZnSe Quantum Dots and Benzoquinone. Sens. Actuators B 2018, 266, 784–792. [Google Scholar] [CrossRef]
- Tian, L.; Wang, X.; Wu, K.; Hu, Y.; Wang, Y.; Lu, J. Ultrasensitive Electrochemiluminescence Biosensor for Dopamine Based on ZnSe, Graphene Oxide@Multi Walled Carbon Nanotube and Ru(bpy)32+. Sens. Actuators B 2019, 286, 266–271. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Guo, X.; Kang, Q.; Shen, D.; Zou, G. Sensitive and Selective Determining Ascorbic Acid and Activity of Alkaline Phosphatase Based on Electrochemiluminescence of Dual-Stabilizers-Capped CdSe Quantum Dots in Carbon Nanotube-Nafion Composite. Talanta 2016, 154, 175–182. [Google Scholar] [CrossRef]
- Stewart, A.J.; Brown, K.; Dennany, L. Cathodic Quantum Dot Facilitated Electrochemiluminescent Detection in Blood. Anal. Chem. 2018, 90, 12944–12950. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Chen, J.; Liu, X.; Mao, C.; Jin, B. Functionalized MOF PCN-222-Loaded Quantum Dots as An Electrochemiluminescence Sensing Platform for the Sensitive Detection of P-Nitrophenol. New J. Chem. 2022, 46, 12054–12061. [Google Scholar] [CrossRef]
- Liu, X.; Guo, L.; Cheng, L.; Ju, H. Determination of Nitrite Based on Its Quenching Effect on Anodic Electrochemiluminescence of CdSe Quantum Dots. Talanta 2009, 78, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Shi, C.; Fan, H.; Bao, N.; Yu, C.; Liu, Y.; Lu, R.; Zhang, Q.; Gu, H. Multiwall Carbon Nanotube–CdS/Hemoglobin Multilayer Films for Electrochemical and Electrochemiluminescent Biosensing. Sens. Actuators B 2012, 174, 421–426. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, M.; Zhang, H.; Wen, W.; Zhang, X.; Wang, S. Enhanced Electrochemiluminescence of RuSi Nanoparticles for Ultrasensitive Detection of Ochratoxin A by Energy Transfer with CdTe Quantum Dots. Biosens. Bioelectron. 2016, 79, 561–567. [Google Scholar] [CrossRef]
- Jia, M.; Jia, B.; Liao, X.; Shi, L.; Zhang, Z.; Liu, M.; Zhou, L.; Li, D.; Kong, W. A CdSe@CdS Quantum Dots Based Electrochemiluminescence Aptasensor for Sensitive Detection of Ochratoxin A. Chemosphere 2022, 287, 131994. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, L.; Lei, J.; Liu, H.; Ju, H. Formation of Surface Traps on Quantum Dots by Bidentate Chelation and Their Application in Low-Potential Electrochemiluminescent Biosensing. Chem. Eur. J. 2010, 16, 10764–10770. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, X.; Lei, J.; Ju, H. Low-Potential Electrochemiluminescent Sensing Based on Surface Unpassivation of CdTe Quantum Dots and Competition of Analyte Cation to Stabilizer. Anal. Chem. 2010, 82, 3359–3364. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Q.; Tan, Z.; Yin, X.; Wang, L. Electrochemiluminescence of CdTe Quantum Dots Capped with Glutathione and Thioglycolic Acid and Its Sensing of Pb2+. Electrochim. Acta 2012, 72, 28–31. [Google Scholar] [CrossRef]
- Hu, X.; Han, H.; Hua, L.; Sheng, Z. Electrogenerated Chemiluminescence of Blue Emitting ZnSe Quantum Dots and Its Biosensing for Hydrogen Peroxide. Biosens. Bioelectron. 2010, 25, 1843–1846. [Google Scholar] [CrossRef]
- Cheng, L.; Deng, S.; Lei, J.; Ju, H. Disposable Electrochemiluminescent Biosensor Using Bidentate-Chelated CdTe Quantum Dots as Emitters for Sensitive Detection of Glucose. Analyst 2012, 137, 140–144. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Q.; Li, Y.; Liu, Z.; Su, X. A Novel Signal-Off Electrochemiluminescence Biosensor for the Determination of Glucose Based on Double Nanoparticles. Biosens. Bioelectron. 2015, 63, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhu, W.; Cai, W.; Li, J.; Wu, D.; Kong, Y. TiO2 Nanotubes Decorated with CdSe Quantum Dots: A Bifunctional Electrochemiluminescent Platform for Chiral Discrimination and Chiral Sensing. Anal. Chem. 2022, 94, 9399–9406. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Tan, Y.; Shi, J.; Liang, G.; Zhu, J. DNA Aptasensor for the Detection of ATP Based on Quantum Dots Electrochemiluminescence. Nanoscale 2010, 2, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Hai, H.; Yang, F.; Li, J. Electrochemiluminescence Sensor Using Quantum Dots Based on a G-Quadruplex Aptamer for the Detection of Pb2+. RSC Adv. 2013, 3, 13144–13148. [Google Scholar] [CrossRef]
- Zhao, P.; Zhou, L.; Nie, Z.; Xu, X.; Li, W.; Huang, Y.; He, K.; Yao, S. Versatile Electrochemiluminescent Biosensor for Protein-Nucleic Acid Interaction Based on the Unique Quenching Effect of Deoxyguanosine-5′-phosphate on Electrochemiluminescence of CdTe/ZnS Quantum Dots. Anal. Chem. 2013, 85, 6279–6286. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, Y.; Lei, J.; Zhang, L.; Ju, H. Design and Biosensing of Mg2+-Dependent DNAzyme-Triggered Ratiometric Electrochemiluminescence. Anal. Chem. 2014, 86, 5158–5163. [Google Scholar] [CrossRef]
Coreactants | ECL Reactions | QDs | ECL Potential/V | ECL Conditions | Ref. |
---|---|---|---|---|---|
C2O42− | Si | +2.5 V (vs. Ag QRE) | THAP/MeCN | [18] | |
TPrA | CdTe/CdS | +0.5 V (vs. Ag/AgCl) | Tris (pH 8.0) | [54] | |
SO32− | CdTe | +0.89 V (vs. Ag/AgCl) | Air-saturated PBS(pH 7.5) | [57] | |
ITO | CdTe | +1.17 V (vs. Ag/AgCl) | Air-saturated PBS (pH 7.4) | [58] | |
Coreactants | ECL Reactions | QDs | ECL Potential/V | ECL Conditions | Ref. |
---|---|---|---|---|---|
CH2Cl2 | CdTe | −1.85 V (vs. SCE) | TBAPF6/CH2Cl2 | [21] | |
S2O82− | CdSe | −0.2 V (vs. SHE) | KOH | [38] | |
H2O2 | CdSe/ZnS | −0.85 V (vs. Ag/AgCl) | PBS (pH 7.4) | [61] | |
O2 | CdSe | −1.1 V (vs. Ag/AgCl) | KNO3/ Air-saturated PBS (pH 9.3) | [39] | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Zhou, P.; Su, B. Electrochemiluminescence of Semiconductor Quantum Dots and Its Biosensing Applications: A Comprehensive Review. Biosensors 2023, 13, 708. https://doi.org/10.3390/bios13070708
Sun H, Zhou P, Su B. Electrochemiluminescence of Semiconductor Quantum Dots and Its Biosensing Applications: A Comprehensive Review. Biosensors. 2023; 13(7):708. https://doi.org/10.3390/bios13070708
Chicago/Turabian StyleSun, Hui, Ping Zhou, and Bin Su. 2023. "Electrochemiluminescence of Semiconductor Quantum Dots and Its Biosensing Applications: A Comprehensive Review" Biosensors 13, no. 7: 708. https://doi.org/10.3390/bios13070708
APA StyleSun, H., Zhou, P., & Su, B. (2023). Electrochemiluminescence of Semiconductor Quantum Dots and Its Biosensing Applications: A Comprehensive Review. Biosensors, 13(7), 708. https://doi.org/10.3390/bios13070708