A Branched Rutile/Anatase Phase Structure Electrode with Enhanced Electron-Hole Separation for High-Performance Photoelectrochemical DNA Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Reagents, Apparatus
2.2. Synthesis of the R-TiO2 NR Electrode
2.3. Fabrication of RA-TiO2 Phase-Structure Electrodes
2.4. Synthesis of Carboxylated CdTe QDs
2.5. PEC Assay Procedure
2.6. Theoretical Calculations
3. Results
3.1. Composition and Morphology Characterization of the Electrodes
3.2. PEC Analysis of the Electrode
3.3. Theoretical Calculation
3.4. Characterization of the PEC Biosensor
3.5. Analysis Performance of PEC Biosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Lv, S.; Zhou, Q.; Tang, D. CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sens. Actuators B Chem. 2020, 307, 127631. [Google Scholar] [CrossRef]
- Fan, D.; Ren, X.; Wang, H.; Wu, D.; Zhao, D.; Chen, Y.; Wei, Q.; Du, B. Ultrasensitive sandwich-type photoelectrochemical immunosensor based on CdSe sensitized La-TiO2 matrix and signal amplification of polystyrene@Ab2 composites. Biosens. Bioelectron. 2017, 87, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Moakhar, R.S.; Goh, G.K.L.; Dolati, A.; Ghorbani, M. Sunlight-driven photoelectrochemical sensor for direct determination of hexavalent chromium based on Au decorated rutile TiO2 nanorods. Appl. Catal. B Environ. 2017, 201, 411–418. [Google Scholar] [CrossRef]
- Yin, H.; Zhou, Y.; Li, B.; Li, X.; Yang, Z.; Ai, S.; Zhang, X. Photoelectrochemical immunosensor for microRNA detection based on gold nanoparticles-functionalized g-C3N4 and anti-DNA:RNA antibody. Sens. Actuators B Chem. 2016, 222, 1119–1126. [Google Scholar] [CrossRef]
- Yan, B.; Cheng, Z.; Lai, C.; Qiao, B.; Yuan, R.; Zhang, C.; Pei, H.; Tu, J.; Wu, Q. Boosting the Photocatalytic Ability of TiO2 Nanosheet Arrays for MicroRNA-155 Photoelectrochemical Biosensing by Titanium Carbide MXene Quantum Dots. Nanomaterials 2022, 12, 3557. [Google Scholar] [CrossRef]
- Hou, T.; Xu, N.; Wang, W.; Ge, L.; Li, F. Truly Immobilization-Free Diffusivity-Mediated Photoelectrochemical Biosensing Strategy for Facile and Highly Sensitive MicroRNA Assay. Anal. Chem. 2018, 90, 9591–9597. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiang, J.; Cheng, H.; Liu, X.; Li, F. Flexible photoelectrochemical biosensor for ultrasensitive microRNA detection based on concatenated multiplex signal amplification. Biosens. Bioelectron. 2021, 194, 113581. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Tian, X.; Li, Q.; Dai, Z.; Wang, L.; Liu, H.; Li, C.; Zahid, K.R.; Wu, C.; Huang, H.; et al. Ultrasensitive photoelectrochemical biosensor for DNA 5-methylcytosine analysis based on co-sensitization strategy combined with bridged DNA nanoprobe. Talanta 2023, 254, 124140. [Google Scholar] [CrossRef]
- Peng, Y.; Pang, H.; Gao, Z.; Li, D.; Lai, X.; Chen, D.; Zhang, R.; Zhao, X.; Chen, X.; Pei, H.; et al. Kinetics-accelerated one-step detection of MicroRNA through spatially localized reactions based on DNA tile self-assembly. Biosens. Bioelectron. 2023, 222, 114932. [Google Scholar] [CrossRef] [PubMed]
- Li, P.P.; Cao, Y.; Mao, C.J.; Jin, B.K.; Zhu, J.J. TiO2/g-C3N4/CdS Nanocomposite-Based Photoelectrochemical Biosensor for Ultrasensitive Evaluation of T4 Polynucleotide Kinase Activity. Anal. Chem. 2019, 91, 1563–1570. [Google Scholar] [CrossRef]
- Hou, T.; Zhang, L.; Sun, X.; Li, F. Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition. Biosens. Bioelectron. 2016, 75, 359–364. [Google Scholar] [CrossRef]
- Yan, B.; Zhuang, Y.; Jiang, Y.; Xu, W.; Chen, Y.; Tu, J.; Wang, X.; Wu, Q. Enhanced photoeletrochemical biosensing performance from rutile nanorod/anatase nanowire junction array. Appl. Surf. Sci. 2018, 458, 382–388. [Google Scholar] [CrossRef]
- Sun, Z.; Tong, Y.; Zhao, L.; Li, J.; Gao, F.; Wang, C.; Li, H.; Du, L.; Jiang, Y. MoS2@Ti3C2 nanohybrid-based photoelectrochemical biosensor: A platform for ultrasensitive detection of cancer biomarker exosomal miRNA. Talanta 2022, 238, 123077. [Google Scholar] [CrossRef]
- Chang, J.; Yu, L.; Li, H.; Li, F. Dye sensitized Ti3C2 MXene-based highly sensitive homogeneous photoelectrochemical sensing of phosphate through decomposition of methylene blue-encapsulated zeolitic imidazolate framework-90. Sens. Actuators B Chem. 2022, 352, 131021. [Google Scholar] [CrossRef]
- Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015, 44, 729–741. [Google Scholar] [CrossRef]
- Hao, N.; Hua, R.; Chen, S.; Zhang, Y.; Zhou, Z.; Qian, J.; Liu, Q.; Wang, K. Multiple signal-amplification via Ag and TiO2 decorated 3D nitrogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor. Biosens. Bioelectron. 2018, 101, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Liu, P.; Zhu, J.; Liu, X.; Ju, H. Electrochemical immunosensor constructed using TiO2 nanotubes as immobilization scaffold and tracing tag. Biosens. Bioelectron. 2016, 85, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huo, X.; Liu, P.; Tang, Y.; Xu, J.; Ju, H. TiO2 nanowire arrays modified with a simultaneous “etching, doping and deposition” technique for ultrasensitive amperometric immunosensing. Biosens. Bioelectron. 2017, 92, 171–178. [Google Scholar] [CrossRef]
- Pang, X.; Bian, H.; Wang, W.; Liu, C.; Khan, M.S.; Wang, Q.; Qi, J.; Wei, Q.; Du, B. A bio-chemical application of N-GQDs and g-C3N4 QDs sensitized TiO2 nanopillars for the quantitative detection of pcDNA3-HBV. Biosens. Bioelectron. 2017, 91, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhao, Z.; Zhang, J.; Guo, W.; Qiu, J.; Li, D.; Li, Z.; Mou, X.; Li, L.; Li, A.; et al. Rutile Nanorod/Anatase Nanowire Junction Array as Both Sensor and Power Supplier for High-Performance, Self-Powered, Wireless UV Photodetector. Small 2016, 12, 2759–2767. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.Q.; Xu, Y.F.; Su, C.Y.; Kuang, D.B. Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells. Energy Environ. Sci. 2014, 7, 644–649. [Google Scholar] [CrossRef]
- Liu, B.; Aydil, E.S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2009, 131, 3985–3990. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ge, S.; Zhang, L.; Yu, J.; Yan, M.; Huang, J. Visible photoelectrochemical sensing platform by in situ generated CdS quantum dots decorated branched-TiO2 nanorods equipped with Prussian blue electrochromic display. Biosens. Bioelectron. 2017, 89, 859–865. [Google Scholar] [CrossRef]
- Sun, X.; Gao, C.; Zhang, L.; Yan, M.; Yu, J.; Ge, S. Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection. Sens. Actuators B Chem. 2017, 251, 1–8. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, L.; Wang, Y.; Yu, J.; Song, X. Visible-light driven biofuel cell based on hierarchically branched titanium dioxide nanorods photoanode for tumor marker detection. Biosens. Bioelectron. 2016, 83, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xu, J.; Yang, X.; Lu, F.; He, S.; Yang, J.; Fan, H.J.; Wu, M. Ultrathin Anatase TiO2 Nanosheets Embedded with TiO2-B Nanodomains for Lithium-Ion Storage: Capacity Enhancement by Phase Boundaries. Adv. Energy Mater. 2015, 5, 1401756. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, S.; Cao, Y.; Wang, H.; Yu, H.; Peng, F. Novel Highly Active Anatase/Rutile TiO2 Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen. ACS Sustain. Chem. Eng. 2018, 6, 10823–10832. [Google Scholar] [CrossRef]
- Gao, C.; Wei, T.; Zhang, Y.; Song, X.; Huan, Y.; Liu, H.; Zhao, M.; Yu, J.; Chen, X. A Photoresponsive Rutile TiO2 Heterojunction with Enhanced Electron-Hole Separation for High-Performance Hydrogen Evolution. Adv. Mater. 2019, 31, 1806596. [Google Scholar] [CrossRef]
- Cao, F.; Xiong, J.; Wu, F.; Liu, Q.; Shi, Z.; Yu, Y.; Wang, X.; Li, L. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 12239–12245. [Google Scholar] [CrossRef]
- Xiong, Z.; Wu, H.; Zhang, L.; Gu, Y.; Zhao, X.S. Synthesis of TiO2 with controllable ratio of anatase to rutile. J. Mater. Chem. A 2014, 2, 9291–9297. [Google Scholar] [CrossRef]
- Fan, G.C.; Han, L.; Zhang, J.R.; Zhu, J.J. Enhanced photoelectrochemical strategy for ultrasensitive DNA detection based on two different sizes of CdTe quantum dots cosensitized TiO2/CdS:Mn hybrid structure. Anal. Chem. 2014, 86, 10877–10884. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, X.; Liang, W.; Yuan, R.; Chai, Y. Ultrasensitive Photoelectrochemical Assay with PTB7-Th/CdTe Quantum Dots Sensitized Structure as Signal Tag and Benzo-4-chlorohexadienone Precipitate as Efficient Quencher. Anal. Chem. 2018, 90, 14521–14526. [Google Scholar] [CrossRef]
- Li, M.; Xiong, C.; Zheng, Y.; Liang, W.; Yuan, R.; Chai, Y. Ultrasensitive Photoelectrochemical Biosensor Based on DNA Tetrahedron as Nanocarrier for Efficient Immobilization of CdTe QDs-Methylene Blue as Signal Probe with Near-Zero Background Noise. Anal. Chem. 2018, 90, 8211–8216. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Yang, P.; Zhu, C.; He, Y.; Fang, L.; Huang, H.; Li, C.; Wang, L.; Deng, J.; Li, Y.; et al. Wavelength-resolved photoelectrochemical biosensor triggered by cascade signal amplification reactions for RNA methylation analysis on a single interface. Sens. Actuators B Chem. 2022, 364, 131920. [Google Scholar] [CrossRef]
- Sun, H.; Mowbray, D.J.; Migani, A.; Zhao, J.; Petek, H.; Rubio, A. Comparing Quasiparticle H2O Level Alignment on Anatase and Rutile TiO2. ACS Catal. 2015, 5, 4242–4254. [Google Scholar] [CrossRef] [Green Version]
- Tu, W.; Cao, H.; Zhang, L.; Bao, J.; Liu, X.; Dai, Z. Dual Signal Amplification Using Gold Nanoparticles-Enhanced Zinc Selenide Nanoflakes and P19 Protein for Ultrasensitive Photoelectrochemical Biosensing of MicroRNA in Cell. Anal. Chem. 2016, 88, 10459–10465. [Google Scholar] [CrossRef]
- Guo, L.; Li, Z.; Marcus, K.; Navarro, S.; Liang, K.; Zhou, L.; Mani, P.D.; Florczy, S.J.; Coffey, K.R.; Orlovskaya, N.; et al. Periodically Patterned Au-TiO2 Heterostructures for Photoelectrochemical Sensor. ACS Sens. 2017, 2, 621–625. [Google Scholar] [CrossRef]
- Wang, G.; Wan, J.; Zhang, X. TTE DNA–Cu NPs: Enhanced fluorescence and application in a target DNA triggered dual-cycle amplification biosensor. Chem. Commun. 2017, 53, 5629–5632. [Google Scholar] [CrossRef]
- Chen, M.; Hou, C.; Huo, D.; Bao, J.; Fa, H.; Shen, C. An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection. Biosens. Bioelectron. 2016, 85, 684–691. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Zhuo, Y.; Chai, Y.; Yuan, R. Highly Efficient Electrochemiluminescent Silver Nanoclusters/Titanium Oxide Nanomaterials as a Signal Probe for Ferrocene-Driven Light Switch Bioanalysis. Anal. Chem. 2017, 89, 3732–3738. [Google Scholar] [CrossRef]
- Guo, L.; Li, Z.; Marcus, K.; Navarro, S.; Liang, K.; Zhou, L.; Mani, P.D.; Florczy, S.J.; Coffey, K.R.; Orlovskaya, N.; et al. Homogeneous Entropy Catalytic-Driven DNA Hydrogel as Strong Signal Blocker for Highly Sensitive Electrochemical Detection of Platelet-Derived Growth Factor. Anal. Chem. 2018, 90, 8241–8247. [Google Scholar]
- Liu, X.P.; Chen, J.S.; Mao, C.J.; Niu, H.L.; Song, J.M.; Jin, B.K. Enhanced photoelectrochemical DNA sensor based on TiO2/Au hybrid structure. Biosens. Bioelectron. 2018, 116, 23–29. [Google Scholar] [CrossRef] [PubMed]
Oligonucleotide | Sequences (From 5′ to 3′) |
---|---|
Hairpin DNA | 5′-H2N-(CH2)6-CTC GCT TGG AAT AGC TGT GAT CAT TGT TAT TAG CGA GTT T-(CH2)6-SH-3′ |
Target DNA | 5′-CTC GCT AAT AAC AAT GAT CAC AGC TAT TCC A-3′ |
Single-base mismatch | 5′-CTC GCT AAT AAC AAT TAT CAC AGC TAT TCC A-3′ |
Noncomplementary | 5′-TAT ATC TGA TCT GTC CCA ATT GTA CGA GTA T-3′ |
Samples | τ1 | τ2 | A1 | A2 | τave |
---|---|---|---|---|---|
R-TiO2 | 0.48 | 3.63 | 428.13 | 27.36 | 1.51 |
RA-TiO2 | 0.63 | 13.76 | 680.45 | 40.17 | 8.02 |
Biosensors | Dynamic Range | Detection Limit | References |
---|---|---|---|
FL 1 | 0.01 pM–10 nM | 3 pM | [38] |
DPV 2 | 10 fM–0.1 μM | 0.31 fM | [39] |
ECL 3 | 50 fg/mL–500 ng/mL | 32 fg/mL | [40] |
EC 4 | 0.01 pM–10 nM | 3.5 fM | [41] |
PEC | 10 fM–0.1 μM | 3 fM | [42] |
PEC | 1 fM–1 nM | 0.23 fM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Yan, B.; Yuan, R.; Qiao, B.; Zhao, G.; Tu, J.; Wang, X.; Pei, H.; Wu, Q. A Branched Rutile/Anatase Phase Structure Electrode with Enhanced Electron-Hole Separation for High-Performance Photoelectrochemical DNA Biosensor. Biosensors 2023, 13, 714. https://doi.org/10.3390/bios13070714
Wang B, Yan B, Yuan R, Qiao B, Zhao G, Tu J, Wang X, Pei H, Wu Q. A Branched Rutile/Anatase Phase Structure Electrode with Enhanced Electron-Hole Separation for High-Performance Photoelectrochemical DNA Biosensor. Biosensors. 2023; 13(7):714. https://doi.org/10.3390/bios13070714
Chicago/Turabian StyleWang, Bingrong, Bingdong Yan, Run Yuan, Bin Qiao, Guangyuan Zhao, Jinchun Tu, Xiaohong Wang, Hua Pei, and Qiang Wu. 2023. "A Branched Rutile/Anatase Phase Structure Electrode with Enhanced Electron-Hole Separation for High-Performance Photoelectrochemical DNA Biosensor" Biosensors 13, no. 7: 714. https://doi.org/10.3390/bios13070714
APA StyleWang, B., Yan, B., Yuan, R., Qiao, B., Zhao, G., Tu, J., Wang, X., Pei, H., & Wu, Q. (2023). A Branched Rutile/Anatase Phase Structure Electrode with Enhanced Electron-Hole Separation for High-Performance Photoelectrochemical DNA Biosensor. Biosensors, 13(7), 714. https://doi.org/10.3390/bios13070714