Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips
Abstract
:1. Introduction
2. Materials and Methods
2.1. PDMS Casting for Fabrication of 3D Microtrap Chips
2.2. Hemagglutination Reactions of Whole Blood Samples in 3D Microtrap Chips
3. Results
3.1. Fabrication of 3D Microtrap Chips
3.2. Control of the Reverse Trapezoidal Geometry of the Microwells
3.3. Optical Absorbance Property for the Agglutinated RBCs
3.4. Hemagglutination in 3D Microtrap Chips
3.5. Hemagglutination Assay via Optical Density Characterization
3.6. Optimization of Microwell Specification
3.7. Statistical Analysis of the Hemagglutination Assay in 3D Microtrap Chips
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nelson, D.L.; Cox, M.M.; Lehninger, A.L. Lehninger Principles of Biochemistry; W.H. Freeman and Company: New York, NY, USA, 2017. [Google Scholar]
- Payne, S. Virus: From Understanding to Investigation, 1st ed.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Vyas, G.N.; Shulman, N.R. Hemagglutination Assay for Antigen and Antibody Associated with Viral Hepatitis. Science 1970, 170, 332. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.A.; Hambie, E.A.; Pettit, D.E.; Perryman, M.W.; Kraus, S.J. Specificity, Sensitivity, and Reproducibility among the Fluorescent Treponemal Antibody-Absorption Test, the Microhemagglutination Assay for Treponema-Pallidum Antibodies, and the Hemagglutination Treponemal Test for Syphilis. J. Clin. Microbiol. 1981, 14, 441–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killian, M.L. Hemagglutination assay for influenza virus. Methods Mol. Biol. 2014, 1161, 3–9. [Google Scholar] [PubMed]
- Neumann, P.W.; Weber, J.M.; Jessamine, A.G.; Oshaughnessy, M.V. Comparison of Measles Antihemolysin Test, Enzyme-Linked Immunosorbent-Assay, and Hemagglutination Inhibition Test with Neutralization Test for Determination of Immune Status. J. Clin. Microbiol. 1985, 22, 296–298. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, L.; Syedbasha, M.; Vogt, D.; Hollenstein, Y.; Hartmann, J.; Linnik, J.E.; Egli, A. An Optimized Hemagglutination Inhibition (HI) Assay to Quantify Influenza-specific Antibody Titers. Jove-J. Vis. Exp. 2017, 130, 55833. [Google Scholar]
- Chong, Z.L.; Soe, H.J.; Ismail, A.A.; Mahboob, T.; Chandramathi, S.; Sekaran, S.D. Evaluation of the Diagnostic Accuracy of a New Biosensors-Based Rapid Diagnostic Test for the Point-Of-Care Diagnosis of Previous and Recent Dengue Infections in Malaysia. Biosensors 2021, 11, 129. [Google Scholar] [CrossRef]
- Kruse, R.L.; Huang, Y.T.; Lee, A.; Zhu, X.M.; Shrestha, R.; Laeyendecker, O.; Littlefield, K.; Pekosz, A.; Bloch, E.M.; Tobian, A.A.R.; et al. A Hemagglutination-Based Semiquantitative Test for Point-of-Care Determination of SARS-CoV-2 Antibody Levels. J. Clin. Microbiol. 2021, 59, e01186-21. [Google Scholar] [CrossRef]
- Townsend, A.; Rijal, P.; Xiao, J.; Tan, T.K.; Huang, K.Y.A.; Schimanski, L.; Huo, J.D.; Gupta, N.; Rahikainen, R.; Matthews, P.C.; et al. A haemagglutination test for rapid detection of antibodies to SARS-CoV-2. Nat. Commun. 2021, 12, 1951. [Google Scholar] [CrossRef]
- Kruse, R.L.; Huang, Y.; Smetana, H.; Gehrie, E.A.; Amukele, T.K.; Tobian, A.A.R.; Mostafa, H.H.; Wang, Z.Z. A rapid, point-of-care red blood cell agglutination assay detecting antibodies against SARS-CoV-2. Biochem. Biophys. Res. Commun. 2021, 553, 165–171. [Google Scholar] [CrossRef]
- Sun, S.Q.; Wu, L.; Geng, Z.H.; Shum, P.P.; Ma, X.Y.; Wang, J.W. Refractometric Imaging and Biodetection Empowered by Nanophotonics. Laser Photonics Rev. 2023, 17, 2200814. [Google Scholar] [CrossRef]
- Ferraz, A.; Carvalho, V.; Soares, F.; Leao, C.P. Characterization of blood samples using image processing techniques. Sens. Actuators A Phys. 2011, 172, 308–314. [Google Scholar] [CrossRef]
- Huet, M.; Cubizolles, M.; Buhot, A. Real time observation and automated measurement of red blood cells agglutination inside a passive microfluidic biochip containing embedded reagents. Biosens. Bioelectron. 2017, 93, 110–117. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, S.H.; Ahn, C.H.; Lee, J.Y.; Kwon, T.H. Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip 2006, 6, 794–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.Y.; Huang, Y.T.; Chou, H.H.; Wang, C.P.; Chen, C.F. Rapid and inexpensive blood typing on thermoplastic chips. Lab Chip 2015, 15, 4533–4541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qiu, X.P.; Zou, Y.R.; Ye, Y.Y.; Qi, C.; Zou, L.Y.; Yang, X.; Yang, K.; Zhu, Y.F.; Yang, Y.J.; et al. A dye-assisted paper-based point-of-care assay for fast and reliable blood grouping. Sci. Transl. Med. 2017, 9, eaaf9209. [Google Scholar] [CrossRef]
- Nam, S.W.; Lee, M.H.; Lee, S.H.; Lee, D.J.; Rossnagel, S.M.; Kim, K.B. Sub-10-nm Nanochannels by Self-Sealing and Self-Limiting Atomic Layer Deposition. Nano Lett. 2010, 10, 3324–3329. [Google Scholar] [CrossRef]
- Nam, S.W. 200 mm wafer-scale fabrication of polydimethylsiloxane fluidic devices for fluorescence imaging of single DNA molecules. Mrs Commun. 2018, 8, 420–427. [Google Scholar] [CrossRef]
- Wang, C.; Nam, S.W.; Cotte, J.M.; Jahnes, C.V.; Colgan, E.G.; Bruce, R.L.; Brink, M.; Lofaro, M.F.; Patel, J.V.; Gignac, L.M.; et al. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules. Nat. Commun. 2017, 8, 14243. [Google Scholar] [CrossRef]
- Okoshi, M.; Yoshida, T. Fabrication of Silicone Rubber-Based Biochip for Disinfection under Deep-UV Light by ArF Excimer Laser-Induced Photodissociation. Electron. Mater. Lett. 2021, 17, 68–73. [Google Scholar] [CrossRef]
- Mehta, V.; Rath, S.N. 3D printed microfluidic devices: A review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Des. Manuf. 2021, 4, 311–343. [Google Scholar] [CrossRef]
- Zhai, Y.G.; Wang, A.Y.; Koh, D.; Schneider, P.; Oh, K.W. A robust, portable and backflow-free micromixing device based on both capillary- and vacuum-driven flows. Lab Chip 2018, 18, 276–284. [Google Scholar] [CrossRef]
- Kamei, K.; Mashimo, Y.; Koyama, Y.; Fockenberg, C.; Nakashima, M.; Nakajima, M.; Li, J.J.; Chen, Y. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed. Microdevices 2015, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, N.; Urrios, A.; Kanga, S.; Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waheed, S.; Cabot, J.M.; Macdonald, N.P.; Lewis, T.; Guijt, R.M.; Paull, B.; Breadmore, M.C. 3D printed microfluidic devices: Enablers and barriers. Lab Chip 2016, 16, 1993–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, R.; Knowlton, S.; Hart, A.; Yenilmez, B.; Ghaderinezhad, F.; Katebifar, S.; Messina, M.; Khademhosseini, A.; Tasoglu, S. 3D-printed microfluidic devices. Biofabrication 2016, 8, 022001. [Google Scholar] [CrossRef] [Green Version]
- Saggiomo, V.; Velders, A.H. Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices. Adv. Sci. 2015, 2, 1500125. [Google Scholar] [CrossRef]
- Comina, G.; Suska, A.; Filippini, D. PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 2014, 14, 424–430. [Google Scholar] [CrossRef]
- Nam, S.W.; Chae, J.P.; Kwon, Y.H.; Son, M.Y.; Bae, J.S.; Park, M.J. Xenopus chip for single-egg trapping, in vitro fertilization, development, and tadpole escape. Biochem. Biophys. Res. Commun. 2021, 569, 29–34. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.Q.; Hao, J.N.; Wallace, G.G.; Beirne, S.; Chen, J. 3D-Printed Wearable Electrochemical Energy Devices. Adv. Funct. Mater. 2022, 32, 2103092. [Google Scholar] [CrossRef]
- Ghosh, U.; Ning, S.; Wang, Y.Z.; Kong, Y.L. Addressing Unmet Clinical Needs with 3D Printing Technologies. Adv. Heal. Mater. 2018, 7, 1800417. [Google Scholar] [CrossRef]
- Jeon, D.G.; Lee, M.J.; Heo, J.; Lee, S.Y.; Boo, Y.C.; Nam, S.W. 3D Sacrificial Microchannels by Scaffold Removal Process for Electrical Characterization of Electrolytes. Electron. Mater. Lett. 2023, 19, 342–349. [Google Scholar] [CrossRef]
- Rehmani, M.A.A.; Jaywant, S.A.; Arif, K.M. Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems. Micromachines 2021, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Kaweesa, D.V.; Moore, J.; Meisel, N.A. Investigating the Impact of Acetone Vapor Smoothing on the Strength and Elongation of Printed ABS Parts. Jom 2017, 69, 580–585. [Google Scholar] [CrossRef]
- Xu, K.; Xi, T.; Liu, C. Design of the desktop vapor polisher with acetone vapor absorption mechanism. J. Phys. Conf. Ser. 2019, 1303, 012061. [Google Scholar] [CrossRef]
- Cai, G.Z.; Xue, L.; Zhang, H.L.; Lin, J.H. A Review on Micromixers. Micromachines 2017, 8, 274. [Google Scholar] [CrossRef]
- Atencia, J.; Beebe, D.J. Controlled microfluidic interfaces. Nature 2005, 437, 648–655. [Google Scholar] [CrossRef]
- Chin, C.D.; Laksanasopin, T.; Cheung, Y.K.; Steinmiller, D.; Linder, V.; Parsa, H.; Wang, J.; Moore, H.; Rouse, R.; Umviligihozo, G.; et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 2011, 17, 1015–1019. [Google Scholar] [CrossRef]
- Fan, R.; Vermesh, O.; Srivastava, A.; Yen, B.K.H.; Qin, L.D.; Ahmad, H.; Kwong, G.A.; Liu, C.C.; Gould, J.; Hood, L.; et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 2008, 26, 1373–1378. [Google Scholar] [CrossRef]
- Bernard, A.; Renault, J.P.; Michel, B.; Bosshard, H.R.; Delamarche, E. Microcontact printing of proteins. Adv. Mater. 2000, 12, 1067–1070. [Google Scholar] [CrossRef]
- Kenis, P.J.A.; Ismagilov, R.F.; Whitesides, G.M. Microfabrication inside capillaries using multiphase laminar flow patterning. Science 1999, 285, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Stroock, A.D.; Dertinger, S.K.W.; Ajdari, A.; Mezić, I.; Stone, H.A.; Whitesides, G.M. Chaotic Mixer for Microchannels. Science 2002, 295, 647–651. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Wu, Z.G. Micromixers—A review. J. Micromech. Microeng. 2005, 15, R1–R16. [Google Scholar] [CrossRef]
- Williams, M.S.; Longmuir, K.J.; Yager, P. A practical guide to the staggered herringbone mixer. Lab Chip 2008, 8, 1121–1129. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.K.; Sunkara, V.; Park, J.; Kim, T.H.; Han, J.R.; Kim, C.J.; Choi, H.I.; Kim, Y.K.; Cho, Y.K. Exodisc for Rapid, Size-Selective, and Efficient Isolation and Analysis of Nanoscale Extracellular Vesicles from Biological Samples. Acs Nano 2017, 11, 1360–1370. [Google Scholar] [CrossRef]
- Gorkin, R.; Park, J.; Siegrist, J.; Amasia, M.; Lee, B.S.; Park, J.M.; Kim, J.; Kim, H.; Madou, M.; Cho, Y.K. Centrifugal microfluidics for biomedical applications. Lab Chip 2010, 10, 1758–1773. [Google Scholar] [CrossRef] [Green Version]
- Choi, G.; Song, D.; Shrestha, S.; Miao, J.; Cui, L.W.; Guan, W.H. A field-deployable mobile molecular diagnostic system for malaria at the point of need. Lab Chip 2016, 16, 4341–4349. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, C.M.; Kinahan, D.J.; Mishra, R.; Mangwanya, F.; Kilcawley, N.; Ferreira, M.; Ducree, J. Label-free, spatially multiplexed SPR detection of immunoassays on a highly integrated centrifugal Lab-on-a-Disc platform. Biosens. Bioelectron. 2018, 119, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Ashiba, H.; Fujimaki, M.; Awazu, K.; Fu, M.; Ohki, Y.; Tanaka, T.; Makishima, M. Hemagglutination detection for blood typing based on waveguide-mode sensors. Sens. Bio-Sens. Res. 2015, 3, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Adamova, L.; Malinovska, L.; Wimmerova, M. New Sensitive Detection Method for Lectin Hemagglutination using Microscopy. Microsc. Res. Techniq. 2014, 77, 841–849. [Google Scholar] [CrossRef]
- Mehri, R.; Mavriplis, C.; Fenech, M. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system. PLoS ONE 2018, 13, e0199911. [Google Scholar] [CrossRef] [PubMed]
- Wicklein, B.; del Burgo, M.A.M.; Yuste, M.; Carregal-Romero, E.; Llobera, A.; Darder, M.; Aranda, P.; Ortin, J.; del Real, G.; Fernandez-Sanchez, C.; et al. Biomimetic Architectures for the Impedimetric Discrimination of Influenza Virus Phenotypes. Adv. Funct. Mater. 2013, 23, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.; Pimenta, S.; Soares, F.O.; Minas, G. A Complete Blood Typing Device for Automatic Agglutination Detection Based on Absorption Spectrophotometry. IEEE Trans. Instrum. Meas. 2015, 64, 112–119. [Google Scholar] [CrossRef]
- Park, J.; Park, J.K. Finger-Actuated Microfluidic Display for Smart Blood Typing. Anal. Chem. 2019, 91, 11636–11642. [Google Scholar] [CrossRef]
- Sklavounos, A.A.; Lamanna, J.; Modi, D.; Gupta, S.; Mariakakis, A.; Callum, J.; Wheeler, A.R. Digital Microfluidic Hemagglutination Assays for Blood Typing, Donor Compatibility Testing, and Hematocrit Analysis. Clin. Chem. 2021, 67, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.L.; Zhang, H.; Chong, T.H.; Yeong, W.Y. 3D Printing of Multilayered and Multimaterial Electronics: A Review. Adv. Electron. Mater. 2021, 7, 2100445. [Google Scholar] [CrossRef]
- Wu, C.; Sun, J.; Yin, B. Research on Integrated 3D Printing of Microfluidic Chips. Micromachines 2023, 14, 1302. [Google Scholar] [CrossRef]
- Kerestes, O.; Pohanka, M. Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity. Biosensors 2023, 13, 599. [Google Scholar] [CrossRef]
- Vu, B.V.; Lei, R.; Mohan, C.; Kourentzi, K.; Willson, R.C. Flash Characterization of Smartphones Used in Point-of-Care Diagnostics. Biosensors 2022, 12, 1060. [Google Scholar] [CrossRef]
- Joo, S.H.; Kim, J.; Hong, J.; Fakhraei Lahiji, S.; Kim, Y.H. Dissolvable Self-Locking Microneedle Patches Integrated with Immunomodulators for Cancer Immunotherapy. Adv. Mater. 2023, 35, 2209966. [Google Scholar] [CrossRef]
- Quan, B.; Liu, X.; Zhao, S.; Chen, X.; Zhang, X.; Chen, Z. Detecting Early Ocular Choroidal Melanoma Using Ultrasound Localization Microscopy. Bioengineering 2023, 10, 428. [Google Scholar] [CrossRef]
- Alawsi, T.; Al-Bawi, Z. A review of smartphone point-of-care adapter design. Eng. Rep. 2019, 1, e12039. [Google Scholar] [CrossRef]
- Lan, Y.; He, B.; Tan, C.S.; Ming, D. Applications of Smartphone-Based Aptasensor for Diverse Targets Detection. Biosensors 2022, 12, 477. [Google Scholar] [CrossRef] [PubMed]
- Hrncirik, F.; Roberts, I.V.; Swords, C.; Christopher, P.J.; Chhabu, A.; Gee, A.H.; Bance, M.L. Impact of Scala Tympani Geometry on Insertion Forces during Implantation. Biosensors 2022, 12, 999. [Google Scholar] [CrossRef] [PubMed]
Sample# | Microwell Dimension | Whole Blood Type | Optical Density (OD) | Diagnostic Decision | ⭘/🞩 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Without Aperture | With Aperture | ||||||||||
Height (μm) | Lower Base (500 μm): Upper Base | Anti-A | Anti-B | Anti-A | <1.7 (Agglutination) >1.7 (Non-agglutinaion) | Anti-B | <1.7 (Agglutination) >1.7 (Non-agglutinaion) | ||||
1 | 500 | 1:2 | A | 0.148 | 0.194 | 1.256 | Agglutination | 2.146 | Non-agglutination | A | ⭘ |
2 | 500 | 1:2 | B | 0.348 | 0.228 | 1.875 | Non-agglutination | 1.233 | Agglutination | B | ⭘ |
3 | 500 | 1:2 | O | 0.210 | 0.286 | 2.555 | Non-agglutination | 2.638 | Non-agglutination | O | ⭘ |
4 | 500 | 1:2 | AB | 0.164 | 0.120 | 1.258 | Agglutination | 1.338 | Agglutination | AB | ⭘ |
5 | 500 | 1:3 | A | 0.165 | 0.214 | 1.504 | Agglutination | 1.881 | Non-agglutination | A | ⭘ |
6 | 500 | 1:3 | B | 0.150 | 0.136 | 2.134 | Non-agglutination | 1.349 | Agglutination | B | ⭘ |
7 | 500 | 1:3 | O | 0.337 | 0.382 | 2.313 | Non-agglutination | 2.486 | Non-agglutination | O | ⭘ |
8 | 500 | 1:3 | AB | 0.240 | 0.223 | 1.119 | Agglutination | 1.529 | Agglutination | AB | ⭘ |
9 | 300 | 1:2 | A | 0.139 | 0.183 | 1.341 | Agglutination | 1.928 | Non-agglutination | A | ⭘ |
10 | 300 | 1:2 | B | 0.186 | 0.115 | 1.959 | Non-agglutination | 1.288 | Agglutination | B | ⭘ |
11 | 300 | 1:2 | O | 0.198 | 0.232 | 3.002 | Non-agglutination | 3.500 | Non-agglutination | O | ⭘ |
12 | 300 | 1:2 | AB | 0.254 | 0.153 | 0.936 | Agglutination | 1.169 | Agglutination | AB | ⭘ |
13 | 500 | 1:2 | A | 0.124 | 0.160 | 1.211 | Agglutination | 2.008 | Non-agglutination | A | ⭘ |
14 | 500 | 1:2 | B | 0.292 | 0.148 | 1.837 | Non-agglutination | 1.230 | Agglutination | B | ⭘ |
15 | 500 | 1:2 | O | 0.247 | 0.323 | 2.058 | Non-agglutination | 1.810 | Non-agglutination | O | ⭘ |
16 | 500 | 1:2 | AB | 0.159 | 0.204 | 1.214 | Agglutination | 0.979 | Agglutination | AB | ⭘ |
17 | 300 | 1:1 | A | 0.126 | 0.127 | 1.004 | Agglutination | 1.170 | Agglutination | O | 🞩 |
18 | 300 | 1:1 | B | 0.244 | 0.195 | 2.421 | Non-agglutination | 1.113 | Agglutination | B | ⭘ |
19 | 300 | 1:1 | O | 0.197 | 0.190 | 2.184 | Non-agglutination | 2.164 | Non-agglutination | O | ⭘ |
20 | 300 | 1:1 | AB | 0.144 | 0.176 | 1.289 | Agglutination | 1.381 | Agglutination | AB | ⭘ |
21 | 1000 | 1:2 | A | 0.096 | 0.107 | 1.010 | Agglutination | 2.232 | Non-agglutination | A | ⭘ |
22 | 1000 | 1:2 | B | 0.198 | 0.151 | 2.383 | Agglutination | 1.238 | Agglutination | B | ⭘ |
23 | 1000 | 1:2 | O | 0.247 | 0.284 | 2.284 | Non-agglutination | 2.355 | Non-agglutination | O | ⭘ |
24 | 1000 | 1:2 | AB | 0.120 | 0.098 | 1.220 | Agglutination | 1.390 | Agglutination | AB | ⭘ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.-W.; Jeon, D.-G.; Yoon, Y.-R.; Lee, G.H.; Chang, Y.; Won, D.I. Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips. Biosensors 2023, 13, 733. https://doi.org/10.3390/bios13070733
Nam S-W, Jeon D-G, Yoon Y-R, Lee GH, Chang Y, Won DI. Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips. Biosensors. 2023; 13(7):733. https://doi.org/10.3390/bios13070733
Chicago/Turabian StyleNam, Sung-Wook, Dong-Gyu Jeon, Young-Ran Yoon, Gang Ho Lee, Yongmin Chang, and Dong Il Won. 2023. "Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips" Biosensors 13, no. 7: 733. https://doi.org/10.3390/bios13070733
APA StyleNam, S. -W., Jeon, D. -G., Yoon, Y. -R., Lee, G. H., Chang, Y., & Won, D. I. (2023). Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips. Biosensors, 13(7), 733. https://doi.org/10.3390/bios13070733