One-Step Ultrasonic Preparation of Stable Bovine Serum Albumin-Perovskite for Fluorescence Analysis of L-Ascorbic Acid and Alkaline Phosphatase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Preparation of CsPbBr3/BSA
2.3. CsPbBr3/BSA-Based Fluorescence Probe for AA Determination
2.4. CsPbBr3/BSA-Based Fluorescence Probe for ALP Determination
2.5. Human Serum Sample Analysis
3. Results
3.1. Characterization of the Synthetic Process of CsPbBr3/BSA NCs
3.2. Optical Properties of CsPbBr3/BSA NCs
3.3. CsPbBr3/BSA NCs for Determination of AA
3.4. CsPbBr3/BSA NCs for Determination of ALP
3.5. Human Serum Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shamsi, J.; Urban, A.S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem. Rev. 2019, 119, 3296–3348. [Google Scholar] [CrossRef]
- Huang, G.; Guo, Z.; Ye, T.; Zhang, C.; Zhou, Y.; Yao, Q.; Chen, X. Colorimetric Determination of Chloridion in Domestic Water Based on the Wavelength Shift of CsPbBr3 Perovskite Nanocrystals via Halide Exchange. J. Anal. Test. 2021, 5, 3–10. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Liu, X.; Gao, Z.; Huang, Y.; Chen, X. Colorimetric Sensing of Hydrogen Peroxide Based on the Wavelength-Shift of CsPbBr3 Perovskite Nanocrystals on Water–Oil Interface. J. Anal. Test. 2023, 7, 1–7. [Google Scholar] [CrossRef]
- Lian, H.W.; Li, Y.; Saravanakumar, S.; Jiang, H.; Li, Z.J.; Wang, J.; Xu, L.Q.; Zhao, W.R.; Han, G. Metal Halide Perovskite Quantum Dots for Amphiprotic Bio-Imaging. Coordin. Chem. Rev. 2022, 452, 214313. [Google Scholar] [CrossRef]
- Shen, Z.H.; Zhao, S.L.; Song, D.D.; Xu, Z.; Qiao, B.; Song, P.J.; Bai, Q.Y.; Cao, J.Y.; Zhang, G.Q.; Swelm, W. Improving the Quality and Luminescence Performance of All-Inorganic Perovskite Nanomaterials for Light-Emitting Devices by Surface Engineering. Small 2020, 16, 1907089. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.; Xu, Z.L.; Chi, Y.W. Alcohol-Stable Perovskite Nanocrystals and Their In Situ Capsulation with Polystyrene. ACS Appl. Mater. Interfaces 2022, 14, 33703–33711. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, H.Y.; Liu, S.; Wang, H.; Zeng, Q.S.; Liu, Z.; Xiong, Q.H.; Fan, H.J. Air Stable Organic-Inorganic Perovskite Nanocrystals@ Polymer Nanofibers and Waveguide Lasing. Small 2020, 16, 2004409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.H.; Wang, X.; Liao, Q.; Xu, Z.Z.; Li, H.Y.; Zheng, L.M.; Fu, H.B. Embedding Perovskite Nanocrystals into a Polymer Matrix for Tunable Luminescence Probes in Cell Imaging. Adv. Funct. Mater. 2017, 27, 1604382. [Google Scholar] [CrossRef]
- Sanjayan, C.G.; Jyothi, M.S.; Balakrishna, R.G. Stabilization of CsPbBr3 Quantum Dots for Photocatalysis, Imaging and Optical Sensing in Water and Biological Medium: A Review. J. Mater. Chem. C 2022, 10, 6935–6956. [Google Scholar]
- Bhattacharyya, S.; Rambabu, D.; Maji, T.K. Mechanochemical Synthesis of a Processable Halide Perovskite Quantum Dot-MOF Composite by Post-Synthetic Metalation. J. Mater. Chem. A 2019, 7, 21106–21111. [Google Scholar] [CrossRef]
- Jing, Y.; Merkx, M.J.M.; Cai, J.M.; Cao, K.; Kessels, W.M.M.; Mackus, A.J.M.; Chen, R. Nanoscale Encapsulation of Perovskite Nanocrystal Luminescent Films via Plasma-Enhanced SiO2 Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2020, 12, 53519–53527. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.W.; Huang, P.; Miao, Y.F.; Liang, A.X.; Wang, X.; Tang, B.; Hou, H.P.; Ren, M.X.; Gao, S.M.; Geng, L.A.; et al. Novel Photoelectrochemical Sensor for Cholesterol Based on CH3NH3PbBr3 Perovskite/TiO2 Inverse Opal Heterojunction Coated with Molecularly Imprinted Polymers. Sens. Actuators B Chem. 2022, 368, 132121. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Guan, J.; Ma, C.; Shu, Y.; Xu, Q.; Hu, X.Y. Competitive Displacement Triggering DBP Photoelectrochemical Aptasensor via Cetyltrimethylammonium Bromide Bridging Aptamer and Perovskite. Anal. Chem. 2022, 94, 1742–1751. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.H.; Tang, X.Q.; Zhang, Z.W.; Song, J.Z.; Niu, T.C.; Shan, D.; Zeng, H.B. Perovskite Nanocrystal Fluorescence-Linked Immunosorbent Assay Methodology for Sensitive Point-of-Care Biological Test. Matter 2020, 3, 273–286. [Google Scholar] [CrossRef]
- Li, J.Y.; Chen, Z.H.Y.; Saha, S.; Utterback, J.K.; Aubrey, M.L.; Yuan, R.F.; Weaver, H.L.; Ginsberg, N.S.; Chapman, K.W.; Filip, M.R.; et al. Zwitterions in 3D Perovskites: Organosulfide-Halide Perovskites. J. Am. Chem. Soc. 2022, 144, 22403–22408. [Google Scholar] [CrossRef]
- Li, S.Q.; Lei, D.Y.; Ren, W.; Guo, X.Y.; Wu, S.F.; Zhu, Y.; Rogach, A.L.; Chhowalla, M.; Jen, A.K.Y. Water-Resistant Perovskite Nanodots Enable Robust Two-Photon Lasing in Aqueous Environment. Nat. Commun. 2020, 11, 1192. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Q.; Cai, Q.; Luo, F.; Dong, N.; Guo, L.H.; Qiu, B.; Lin, Z.Y. Sensitive Fluorescent Sensor for Hydrogen Sulfide in Rat Brain Microdialysis via CsPbBr3 Quantum Dots. Anal. Chem. 2019, 91, 15915–15921. [Google Scholar] [CrossRef]
- Deng, L.; Ma, F.H.; Yang, M.H.; Li, X.Q.; Chen, X. A Halide Perovskite/Lead Sulfide Heterostructure with Enhanced Photoelectrochemical Performance for the Sensing of Alkaline Phosphatase (ALP). Chem. Commun. 2023, 59, 1361–1364. [Google Scholar] [CrossRef]
- Ghorai, A.; Mahato, S.; Singh, S.; Bose, S.; Roy, B.; Jeong, U.; Ray, S.K. Ligand-Mediated Revival of Degraded α-CsPbI3 to Stable Highly Luminescent Perovskite. Angew. Chem. Int. Ed. 2023, 62, e202302852. [Google Scholar] [CrossRef]
- Shen, W.; Yu, Y.; Zhang, W.Z.; Chen, Y.F.; Zhang, J.B.; Yang, L.; Feng, J.T.; Cheng, G.; Liu, L.H.; Chen, S.F. Efficient Pure Blue Light-Emitting Diodes Based on CsPbBr3 Quantum-Confined Nanoplates. ACS Appl. Mater. Interfaces 2022, 14, 5682–5691. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.L.; Hu, X.D.; Wei, C.T.; Xu, B.; Leng, J.; Miao, H.B.; Zeng, H.B.; Li, X.M. Ligands for CsPbBr3 Perovskite Quantum Dots: The Stronger the Better? Chem. Eng. J. 2023, 453, 139904. [Google Scholar] [CrossRef]
- Calzolai, L.; Franchini, F.; Gilliland, D.; Rossi, F. Protein-Nanoparticle Interaction: Identification of the Ubiquitin-Gold Nanoparticle Interaction Site. Nano Lett. 2010, 10, 3101–3105. [Google Scholar] [CrossRef]
- Chen, H.Y.; TIan, F.S.; Lu, C. Engineering Plasmon-Enhanced Fluorescent Gold Nanoclusters Using Bovine Serum Albumin as a Novel Separation Layer for Improved Selectivity. Anal. Chem. 2022, 94, 16461–16469. [Google Scholar] [CrossRef] [PubMed]
- Haydous, F.; Gardner, J.M.; Cappel, U.B. The Impact of Ligands on the Synthesis and Application of Metal Halide Perovskite Nanocrystals. J. Mater. Chem. A 2021, 9, 23419–23443. [Google Scholar] [CrossRef]
- Xie, M.; Liu, H.; Chun, F.; Deng, W.; Luo, C.; Zhu, Z.; Yang, M.; Li, Y.; Li, W.; Yan, W.; et al. Aqueous Phase Exfoliating Quasi-2D CsPbBr3 Nanosheets with Ultrahigh Intrinsic Water Stability. Small 2019, 15, 1901994. [Google Scholar] [CrossRef]
- Yu, S.K.; Zhang, Z.R.; Ren, Z.H.; Zhai, H.L.; Zhu, Q.Y.; Dai, J. 2D Lead Iodide Perovskite with Mercaptan-Containing Amine and Its Exceptional Water Stability. Inorg. Chem. 2021, 60, 9132–9140. [Google Scholar] [CrossRef]
- Song, J.Y.; Guo, X.Y.; Chen, H.Y.; Tang, Y.E.; Han, L. Ascorbic Acid-Caused Quenching Effect of Protein Clusteroluminescence Probe: The Fast Fluorescent Detection of Ascorbic Acid in Vegetables. Molecules 2023, 28, 2162. [Google Scholar] [CrossRef]
- Xiang, X.X.; Ouyang, H.; Li, J.Z.; Fu, Z.F. Humidity-Sensitive CsPbBr3 Perovskite Based Photoluminescent Sensor for Detecting Water Content in Herbal Medicines. Sens. Actuators B Chem. 2021, 346, 130547. [Google Scholar] [CrossRef]
- Huangfu, C.X.; Feng, L. High-Performance Fluorescent Sensor Based on CsPbBr3 Quantum Dots for Rapid Analysis of Total Polar Materials in Edible Oils. Sens. Actuators B Chem. 2021, 344, 130193. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Y.J.; Shi, L.X.; Fan, Y. Perovskite Nanomaterial-Engineered Multiplex-Mode Fluorescence Sensing of Edible Oil Quality. Anal. Chem. 2021, 93, 11033–11042. [Google Scholar] [CrossRef] [PubMed]
- Li, M.L.; Wang, Y.; Hu, H.; Feng, Y.K.; Zhu, S.; Li, C.; Feng, N.H. A Dual-Readout Sandwich Immunoassay Based on Biocatalytic Perovskite Nanocrystals for Detection of Prostate Specific Antigen. Biosens. Bioelectron. 2022, 203, 113979. [Google Scholar] [CrossRef]
- Liu, S.G.; Han, L.; Li, N.; Fan, Y.Z.; Yang, Y.Z.; Li, N.B.; Luo, H.Q. A Ratiometric Fluorescent Strategy for Alkaline Phosphatase Activity Assay Based on g-C3N4/CoOOH Nanohybrid via Target-Triggered Competitive Redox Reaction. Sens. Actuators B Chem. 2019, 283, 515–523. [Google Scholar] [CrossRef]
- Liu, X.T.; Fan, N.N.; Wu, L.J.; Wu, C.C.; Zhou, Y.Q.; Li, P.; Tang, B. Lighting up Alkaline Phosphatase in Drug-Induced Liver Injury Using a New Chemiluminescence Resonance Energy Transfer Nanoprobe. Chem. Commun. 2018, 54, 12479–12482. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Ren, J.Q.; Wang, S.K.; Mai, J.M.; Qu, B.; Zhang, Y.; Shen, A.G.; Hu, J.M. Rapid and Reliable Detection of Alkaline Phosphatase by A Hot Spots Amplification Strategy Based on Well-Controlled Assembly on Single Nanoparticle. ACS Appl. Mater. Interfaces. 2017, 9, 29547–29553. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, E.; Li, X.; Li, J.; Zhang, X.; Chen, J. Sensitive Electrochemical Assay of Alkaline Phosphatase Activity Based on TdT-Mediated Hemin/G-quadruplex DNAzyme Nanowires for Signal Amplification. Biosens. Bioelectron. 2017, 87, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Mahato, K.; Purohit, B.; Kumar, A.; Chandra, P. Clinically Comparable Impedimetric Immunosensor for Serum Alkaline Phosphatase Detection Based on Electrochemically Engineered Au-nano-Dendroids and Graphene Oxide Nanocomposite. Biosens. Bioelectron. 2020, 148, 111815. [Google Scholar] [CrossRef]
Sample | Spiked (U/L) | Found (U/L) | RSD (%) | Recovery (%) |
---|---|---|---|---|
1 | --- | 46.2 | 4.2 | --- |
2 | 100 | 142.8 | 2.3 | 96.6 |
3 | 200 | 263.2 | 4.7 | 108.8 |
4 | 300 | 351.3 | 1.6 | 101.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Huang, F.; Zhang, A.; Wang, T.; Yang, M.; Li, X.; Chen, X. One-Step Ultrasonic Preparation of Stable Bovine Serum Albumin-Perovskite for Fluorescence Analysis of L-Ascorbic Acid and Alkaline Phosphatase. Biosensors 2023, 13, 770. https://doi.org/10.3390/bios13080770
Deng L, Huang F, Zhang A, Wang T, Yang M, Li X, Chen X. One-Step Ultrasonic Preparation of Stable Bovine Serum Albumin-Perovskite for Fluorescence Analysis of L-Ascorbic Acid and Alkaline Phosphatase. Biosensors. 2023; 13(8):770. https://doi.org/10.3390/bios13080770
Chicago/Turabian StyleDeng, Lei, Feng Huang, Aomei Zhang, Tingting Wang, Minghui Yang, Xiaoqing Li, and Xiang Chen. 2023. "One-Step Ultrasonic Preparation of Stable Bovine Serum Albumin-Perovskite for Fluorescence Analysis of L-Ascorbic Acid and Alkaline Phosphatase" Biosensors 13, no. 8: 770. https://doi.org/10.3390/bios13080770
APA StyleDeng, L., Huang, F., Zhang, A., Wang, T., Yang, M., Li, X., & Chen, X. (2023). One-Step Ultrasonic Preparation of Stable Bovine Serum Albumin-Perovskite for Fluorescence Analysis of L-Ascorbic Acid and Alkaline Phosphatase. Biosensors, 13(8), 770. https://doi.org/10.3390/bios13080770