Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives
Abstract
:1. Introduction
2. The Mammalian TrxR Probes
2.1. Strained 1,2-Dithiolane as the Trigger
2.2. 1,2-Thiaselenane as the Trigger
2.3. Linear Diselenide as the Trigger
2.4. α,β-Unsaturated Ketone Moieties as the Triggers for Labelling/Imaging Agents
2.5. Linear Disulfide as the Trigger
3. Conclusions and Perspectives
3.1. Can 1,2-Dithiolane Be Employed as the Trigger for TrxR Probes?
3.2. How Can We Achieve Selectivity towards TrxR Using a 1,2-Dithiane Scaffold?
3.3. Other Chemical Candidates as Selective Substrates for TrxR?
3.4. Potential Approaches for the Development of High-Quality TrxR Probes
3.5. Issues in the Development of TrxR Probes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gencheva, R.; Arnér, E.S.J. Thioredoxin Reductase Inhibition for Cancer Therapy. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Gencheva, R.; Cheng, Q.; Arnér, E.S.J. Thioredoxin Reductase Selenoproteins from Different Organisms as Potential Drug Targets for Treatment of Human Diseases. Free Radical Biol. Med. 2022, 190, 320–338. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zou, L.; Lu, J.; Holmgren, A. Selenocysteine in Mammalian Thioredoxin Reductase and Application of Ebselen as a Therapeutic. Free Radical Biol. Med. 2018, 127, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Arnér, E.S.J.; Holmgren, A. Physiological Functions of Thioredoxin and Thioredoxin Reductase. Eur. J. Biochem. 2000, 267, 6102–6109. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, A.; Lu, J. Thioredoxin and Thioredoxin Reductase: Current Research with Special Reference to Human Disease. Biochem. Biophys. Res. Commun. 2010, 396, 120–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol. Sci. 2017, 38, 794–808. [Google Scholar]
- Zhang, J.; Duan, D.; Osama, A.; Fang, J. Natural Molecules Targeting Thioredoxin System and Their Therapeutic Potential. Antioxid. Redox Signal. 2021, 34, 1083–1107. [Google Scholar] [CrossRef]
- Schenk, H.; Vogt, M.; Dröge, W.; Schulze-Osthoff, K. Thioredoxin as a Potent Costimulus of Cytokine Expression. J. Immunol. 1996, 156, 765–771. [Google Scholar] [CrossRef]
- Awan, M.U.N.; Yan, F.; Mahmood, F.; Bai, L.; Liu, J.; Bai, J. The Functions of Thioredoxin 1 in Neurodegeneration. Antioxid. Redox Signal. 2022, 36, 1023–1036. [Google Scholar]
- Nagarajan, N.; Oka, S.; Sadoshima, J. Modulation of Signaling Mechanisms in the Heart by Thioredoxin 1. Free Radical Biol. Med. 2017, 109, 125–131. [Google Scholar]
- Holmgren, A. Thioredoxin. Annu. Rev. Biochem. 1985, 54, 237–271. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.-F.; Messens, J. Structure, Function, and Mechanism of Thioredoxin Proteins. Antioxid. Redox Signal. 2010, 13, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Scalcon, V.; Bindoli, A.; Rigobello, M.P. Significance of the Mitochondrial Thioredoxin Reductase in Cancer Cells: An Update on Role, Targets and Inhibitors. Free Radical Biol. Med. 2018, 127, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Holmgren, A. The Thioredoxin Antioxidant System. Free Radical Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Vizuete, A.; Sadek, C.M.; Jiménez, A.; Krause, W.J.; Sutovsky, P.; Oko, R. The Mammalian Testis—Specific Thioredoxin System. Antioxid. Redox Signal. 2004, 6, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.L. Thioredoxin—A Fold for All Reasons. Structure 1995, 3, 245–250. [Google Scholar] [CrossRef]
- Ren, X.; Lu, J.; Holmgren, A. Thioredoxin and Cellular Redox Systems: Beyond Protein Disulfide Bond Reduction. In Oxidative Folding of Proteins; Feige, M.J., Ed.; The Royal Society of Chemistry: London, UK, 2018; pp. 355–378. [Google Scholar]
- Ghareeb, H.; Metanis, N. The Thioredoxin System: A Promising Target for Cancer Drug Development. Chem. Eur. J. 2020, 26, 10175–10184. [Google Scholar] [CrossRef]
- Wu, C.; Parrott, A.M.; Fu, C.; Liu, T.; Marino, S.M.; Gladyshev, V.N.; Jain, M.R.; Baykal, A.T.; Li, Q.; Oka, S.; et al. Thioredoxin 1-Mediated Post-Translational Modifications: Reduction, Transnitrosylation, Denitrosylation, and Related Proteomics Methodologies. Antioxid. Redox Signal. 2011, 15, 2565–2604. [Google Scholar] [CrossRef] [Green Version]
- Tonissen, K.F.; Di Trapani, G. Thioredoxin System Inhibitors as Mediators of Apoptosis for Cancer Therapy. Mol. Nutr. Food Res. 2009, 53, 87–103. [Google Scholar] [CrossRef]
- Fridovich, I.; Poole, L.B.; Holmgren, A.; Lou, M.F.; Gladyshev, V.N.; David, S.S.; Osborne, R.L.; Dawson, J.H.; Copley, S.D.; Kadokura, H.; et al. Antioxidant Enzymes. In Redox Biochemistry; Banerjee, R., Becker, D.F., Dickman, M.B., Gladyshev, V.N., Ragsdale, S.W., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 49–134. [Google Scholar]
- Lei, X.G.; Zhu, J.H.; Cheng, W.H.; Bao, Y.; Ho, Y.S.; Reddi, A.R.; Holmgren, A.; Arner, E.S. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol. Rev. 2016, 96, 307–364. [Google Scholar] [CrossRef] [Green Version]
- Arnér, E.S.J. Focus on Mammalian Thioredoxin Reductases—Important Selenoproteins with Versatile Functions. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 495–526. [Google Scholar] [CrossRef] [PubMed]
- Fritz-Wolf, K.; Kehr, S.; Stumpf, M.; Rahlfs, S.; Becker, K. Crystal Structure of the Human Thioredoxin Reductase—Thioredoxin Complex. Nat. Commun. 2011, 2, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjorklund, G.; Zou, L.; Wang, J.; Chasapis, C.T.; Peana, M. Thioredoxin Reductase as a Pharmacological Target. Pharmacol. Res. 2021, 174, 105854. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, B.; Arnér, E.S.J. Thioredoxin-Related Protein of 14 kDa as a Modulator of Redox Signalling Pathways. Br. J. Pharmacol. 2019, 176, 544–553. [Google Scholar] [CrossRef] [Green Version]
- Balsera, M.; Buchanan, B.B. Evolution of the Thioredoxin System as a Step Enabling Adaptation to Oxidative Stress. Free Radical Biol. Med. 2019, 140, 28–35. [Google Scholar] [CrossRef]
- Dagnell, M.; Schmidt, E.E.; Arnér, E.S.J. The A to Z of Modulated Cell Patterning by Mammalian Thioredoxin Reductases. Free Radical Biol. Med. 2018, 115, 484–496. [Google Scholar] [CrossRef]
- Lu, J.; Holmgren, A. Thioredoxin System in Cell Death Progression. Antioxid. Redox Signal. 2012, 17, 1738–1747. [Google Scholar] [CrossRef]
- Powis, G.; Kirkpatrick, D.L. Thioredoxin Signaling as a Target for Cancer Therapy. Curr. Opin. Pharmacol. 2007, 7, 392–397. [Google Scholar] [CrossRef]
- Jia, J.; Xu, G.; Zhu, D.; Liu, H.; Xiansi, Z.; Li, L. Advances in the Functions of Thioredoxin System in Central Nervous System Diseases. Antioxid. Redox Signal. 2022, 38, 425–441. [Google Scholar] [CrossRef]
- Wang, S.; Di Trapani, G.; Tonissen, K.F. Expanding the Armory for Treating Lymphoma: Targeting Redox Cellular Status through Thioredoxin Reductase Inhibition. Pharmacol. Res. 2022, 177, 106134. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zhao, Z.; Cai, W.; Fang, J. Thioredoxin Signaling Pathways in Cancer. Antioxid. Redox Signal. 2023, 38, 403–424. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, R.S.; Sharma, D.; Sandur, S.K. Thioredoxin Reductase: An Emerging Pharmacologic Target for Radiosensitization of Cancer. Transl. Oncol. 2022, 17, 101341. [Google Scholar] [CrossRef]
- Song, Z.L.; Zhao, L.; Ma, T.; Osama, A.; Shen, T.; He, Y.; Fang, J. Progress and Perspective on Hydrogen Sulfide Donors and Their Biomedical Applications. Med. Res. Rev. 2022, 42, 1930–1977. [Google Scholar] [CrossRef] [PubMed]
- Bian, M.; Fan, R.; Zhao, S.; Liu, W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J. Med. Chem. 2019, 62, 7309–7321. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zou, L.; Zhang, X.; Branco, V.; Wang, J.; Carvalho, C.; Holmgren, A.; Lu, J. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Antioxid. Redox Signal. 2017, 27, 989–1010. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, D.F.; Abderrazak, A.; El Hadri, K.; Simmet, T.; Rouis, M. The Thioredoxin System as a Therapeutic Target in Human Health and Disease. Antioxid. Redox Signal. 2013, 19, 1266–1303. [Google Scholar] [CrossRef]
- Arnér, E.S.J.; Zhong, L.; Holmgren, A. Preparation and Assay of Mammalian Thioredoxin and Thioredoxin Reductase. In Oxidants and Antioxidants Part B; Packer, L., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; Volume 300, pp. 226–239. [Google Scholar]
- Arnér, E.S.J. Selective Evaluation of Thioredoxin Reductase Enzymatic Activities. In Selenoproteins: Methods and Protocols; Chavatte, L., Ed.; Humana Press: New York, NY, USA, 2017; Volume 1661, pp. 301–309. [Google Scholar]
- Holmgren, A. Bovine Thioredoxin System. Purification of Thioredoxin Reductase from Calf Liver and Thymus and Studies of Its Function in Disulfide Reduction. J. Biol. Chem. 1977, 252, 4600–4606. [Google Scholar] [CrossRef]
- Hill, K.E.; McCollum, G.W.; Burk, R.F. Determination of Thioredoxin Reductase Activity in Rat Liver Supernatant. Anal. Biochem. 1997, 253, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Mertens, R.T.; Gukathasan, S.; Arojojoye, A.S.; Olelewe, C.; Awuah, S.G. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem. Rev. 2023, 123, 6612–6667. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, X.; Zou, T. Modulating the Chemical Reactivity of Gold Complexes in Living Systems: From Concept to Biomedical Applications. Acc. Chem. Res. 2023, 56, 1043–1056. [Google Scholar] [CrossRef]
- Saei, A.A.; Gullberg, H.; Sabatier, P.; Beusch, C.M.; Johansson, K.; Lundgren, B.; Arvidsson, P.I.; Arner, E.S.J.; Zubarev, R.A. Comprehensive Chemical Proteomics for Target Deconvolution of the Redox Active Drug Auranofin. Redox Biol. 2020, 32, 101491. [Google Scholar] [CrossRef]
- Casini, A.; Messori, L. Molecular Mechanisms and Proposed Targets for Selected Anticancer Gold Compounds. Curr. Top. Med. Chem. 2011, 11, 2647–2660. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, A. Thioredoxin Catalyzes the Reduction of Insulin Disulfides by Dithiothreitol and Dihydrolipoamide. J. Biol. Chem. 1979, 254, 9627–9632. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, A. Reduction of Disulfides by Thioredoxin. Exceptional Reactivity of Insulin and Suggested Functions of Thioredoxin in Mechanism of Hormone Action. J. Biol. Chem. 1979, 254, 9113–9119. [Google Scholar] [CrossRef] [PubMed]
- Arner, E.S.; Holmgren, A. Measurement of Thioredoxin and Thioredoxin Reductase. Curr. Protoc. Toxicol. 2001, 24, 7.4. [Google Scholar] [CrossRef]
- Heuck, A.P.; Wolosiuk, R.A. Fluoresceinthiocarbamyl-Insulin: A Potential Analytical Tool for the Assay of Disulfide Bond Reduction. J. Biochem. Biophys. Methods 1997, 34, 213–225. [Google Scholar] [CrossRef]
- Montano, S.J.; Lu, J.; Gustafsson, T.N.; Holmgren, A. Activity Assays of Mammalian Thioredoxin and Thioredoxin Reductase: Fluorescent Disulfide Substrates, Mechanisms, and Use with Tissue Samples. Anal. Biochem. 2014, 449, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Cunniff, B.; Snider, G.W.; Fredette, N.; Hondal, R.J.; Heintz, N.H. A Direct and Continuous Assay for the Determination of Thioredoxin Reductase Activity in Cell Lysates. Anal. Biochem. 2013, 443, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, B.; Yan, C.; Li, J.; Wang, S.; Wei, X.; Jiang, X.; Zhou, P.; Fang, J. A Fast and Specific Fluorescent Probe for Thioredoxin Reductase that Works via Disulphide Bond Cleavage. Nat. Commun. 2019, 10, 2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Wang, Z.; Zhong, M.; Xu, Q.; Li, X.; Chang, B.; Fang, J. Integration of a Diselenide Unit Generates Fluorogenic Camptothecin Prodrugs with Improved Cytotoxicity to Cancer Cells. J. Med. Chem. 2021, 64, 17979–17991. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hou, Y.; Zhao, J.; Li, J.; Wang, S.; Fang, J. Combination of Chemotherapy and Oxidative Stress to Enhance Cancer Cell Apoptosis. Chem. Sci. 2020, 11, 3215–3222. [Google Scholar] [CrossRef] [Green Version]
- Chuard, N.; Poblador-Bahamonde, A.I.; Zong, L.; Bartolami, E.; Hildebrandt, J.; Weigand, W.; Sakai, N.; Matile, S. Diselenolane-Mediated Cellular Uptake. Chem. Sci. 2018, 9, 1860–1866. [Google Scholar] [CrossRef] [Green Version]
- Arai, K.; Ueno, H.; Asano, Y.; Chakrabarty, G.; Shimodaira, S.; Mugesh, G.; Iwaoka, M. Protein Folding in the Presence of Water-Soluble Cyclic Diselenides with Novel Oxidoreductase and Isomerase Activities. ChemBioChem 2018, 19, 207–211. [Google Scholar] [CrossRef]
- Iwaoka, M.; Takahashi, T.; Tomoda, S. Syntheses and Structural Characterization of Water-Soluble Selenium Reagents for the Redox Control of Protein Disulfide Bonds. Heteroat. Chem. 2001, 12, 293–299. [Google Scholar] [CrossRef]
- Rackham, O.; Shearwood, A.M.; Thyer, R.; McNamara, E.; Davies, S.M.; Callus, B.A.; Miranda-Vizuete, A.; Berners-Price, S.J.; Cheng, Q.; Arner, E.S.; et al. Substrate and Inhibitor Specificities Differ between Human Cytosolic and Mitochondrial Thioredoxin Reductases: Implications for Development of Specific Inhibitors. Free Radical Biol. Med. 2011, 50, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Cheng, Q.; Arner, E.S. Details in the Catalytic Mechanism of Mammalian Thioredoxin Reductase 1 Revealed Using Point Mutations and Juglone-Coupled Enzyme Activities. Free Radical Biol. Med. 2016, 94, 110–120. [Google Scholar] [CrossRef]
- Anestal, K.; Prast-Nielsen, S.; Cenas, N.; Arner, E.S. Cell Death by SecTRAPs: Thioredoxin Reductase as a Prooxidant Killer of Cells. PLoS ONE 2008, 3, e1846. [Google Scholar] [CrossRef] [PubMed]
- Cenas, N.; Nivinskas, H.; Anusevicius, Z.; Sarlauskas, J.; Lederer, F.; Arnér, E.S.J. Interactions of Quinones with Thioredoxin Reductase. J. Biol. Chem. 2004, 279, 2583–2592. [Google Scholar] [CrossRef] [Green Version]
- Pader, I.; Sengupta, R.; Cebula, M.; Xu, J.; Lundberg, J.O.; Holmgren, A.; Johansson, K.; Arnér, E.S.J. Thioredoxin-Related Protein of 14 kDa Is an Efficient L-Cystine Reductase and S-Denitrosylase. Proc. Natl. Acad. Sci. USA 2014, 111, 6964–6969. [Google Scholar] [CrossRef]
- Wu, X.; Wang, R.; Kwon, N.; Ma, H.; Yoon, J. Activatable Fluorescent Probes for in situ Imaging of Enzymes. Chem. Soc. Rev. 2022, 51, 450–463. [Google Scholar] [CrossRef]
- Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T.D.; Lin, W. Small Molecule Based Fluorescent Chemosensors for Imaging the Microenvironment within Specific Cellular Regions. Chem. Soc. Rev. 2021, 50, 12098–12150. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ren, W.X.; Hou, J.T.; Won, M.; An, J.; Chen, X.; Shu, J.; Kim, J.S. Fluorescence Imaging of Pathophysiological Microenvironments. Chem. Soc. Rev. 2021, 50, 8887–8902. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Murfin, L.C.; Wu, L.; Lewis, S.E.; James, T.D. Fluorescent Small Organic Probes for Biosensing. Chem. Sci. 2021, 12, 3406–3426. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Kaur, N.; Singh, N. Trends in Small Organic Fluorescent Scaffolds for Detection of Oxidoreductase. Biosens. Bioelectron. 2021, 191, 113441. [Google Scholar] [CrossRef]
- Liu, H.W.; Chen, L.; Xu, C.; Li, Z.; Zhang, H.; Zhang, X.B.; Tan, W. Recent Progresses in Small-Molecule Enzymatic Fluorescent Probes for Cancer Imaging. Chem. Soc. Rev. 2018, 47, 7140–7180. [Google Scholar] [CrossRef]
- Ma, S.; Kim, J.H.; Chen, W.; Li, L.; Lee, J.; Xue, J.; Liu, Y.; Chen, G.; Tang, B.; Tao, W.; et al. Cancer Cell-Specific Fluorescent Prodrug Delivery Platforms. Adv. Sci. 2023, 10, e2207768. [Google Scholar] [CrossRef]
- Wen, Y.; Jing, N.; Zhang, M.; Huo, F.; Li, Z.; Yin, C. A Space-Dependent ‘Enzyme-Substrate’ Type Probe Based on ‘Carboxylesterase-Amide Group’ for Ultrafast Fluorescent Imaging Orthotopic Hepatocellular Carcinoma. Adv. Sci. 2023, 10, e2206681. [Google Scholar] [CrossRef]
- Gao, W.; Lu, S.; Zhang, S.; Liu, J.; Kang, J.; Yin, C. A Dual-Channel Fluorogenic Probe for Simultaneous and Distinguishable Imaging of Protein Monothiols and Vicinal-Dithiols in Live Cells. Dyes Pigm. 2023, 212, 111143. [Google Scholar] [CrossRef]
- Mafireyi, T.J.; Escobedo, J.O.; Strongin, R.M. Fluorogenic probes for thioredoxin reductase activity. Results Chem. 2021, 3, 100127. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, W.; Chung, J.; Yin, J.; Yoon, J. Recent Progress in Fluorescent Probes for Bacteria. Chem. Soc. Rev. 2021, 50, 7725–7744. [Google Scholar] [CrossRef]
- Gao, L.; Wang, W.; Wang, X.; Yang, F.; Xie, L.; Shen, J.; Brimble, M.A.; Xiao, Q.; Yao, S.Q. Fluorescent Probes for Bioimaging of Potential Biomarkers in Parkinson’s Disease. Chem. Soc. Rev. 2021, 50, 1219–1250. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shi, W.; Li, X.; Ma, H. Recognition Moieties of Small Molecular Fluorescent Probes for Bioimaging of Enzymes. Acc. Chem. Res. 2019, 52, 1892–1904. [Google Scholar] [CrossRef] [PubMed]
- Arnér, E.S.J.; Nordberg, J.; Holmgren, A. Efficient Reduction of Lipoamide and Lipoic Acid by Mammalian Thioredoxin Reductase. Biochem. Biophys. Res. Commun. 1996, 225, 268–274. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, D.; Liu, Y.; Ge, C.; Cui, X.; Sun, J.; Fang, J. Highly Selective Off-On Fluorescent Probe for Imaging Thioredoxin Reductase in Living Cells. J. Am. Chem. Soc. 2014, 136, 226–233. [Google Scholar] [CrossRef]
- Zeisel, L.; Felber, J.G.; Scholzen, K.C.; Poczka, L.; Cheff, D.; Maier, M.S.; Cheng, Q.; Shen, M.; Hall, M.D.; Arner, E.S.J.; et al. Selective Cellular Probes for Mammalian Thioredoxin Reductase TrxR1: Rational Design of RX1, a Modular 1,2-Thiaselenane Redox Probe. Chem 2022, 8, 1493–1517. [Google Scholar] [CrossRef]
- Felber, J.G.; Poczka, L.; Scholzen, K.C.; Zeisel, L.; Maier, M.S.; Busker, S.; Theisen, U.; Brandstadter, C.; Becker, K.; Arner, E.S.J.; et al. Cyclic 5-Membered Disulfides Are Not Selective Substrates of Thioredoxin Reductase, but Are Opened Nonspecifically. Nat. Commun. 2022, 13, 1754. [Google Scholar] [CrossRef]
- Stafford, W.C.; Peng, X.; Olofsson, M.H.; Zhang, X.; Luci, D.K.; Lu, L.; Cheng, Q.; Trésaugues, L.; Dexheimer, T.S.; Coussens, N.P.; et al. Irreversible Inhibition of Cytosolic Thioredoxin Reductase 1 as a Mechanistic Basis for Anticancer Therapy. Sci. Transl. Med. 2018, 10, eaaf7444. [Google Scholar] [CrossRef] [Green Version]
- Busker, S.; Qian, W.; Haraldsson, M.; Espinosa, B.; Johansson, L.; Attarha, S.; Kolosenko, I.; Liu, J.; Dagnell, M.; Grander, D.; et al. Irreversible TrxR1 Inhibitors Block STAT3 Activity and Induce Cancer Cell Death. Sci. Adv. 2020, 6, eaax7945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Bian, M.; Lv, L.; Chang, X.; Wen, Z.; Li, F.; Lu, Y.; Liu, W. Tumor-Targeting NHC-Au(I) Complex Induces Immunogenic Cell Death in Hepatocellular Carcinoma. J. Med. Chem. 2023, 66, 3934–3952. [Google Scholar] [CrossRef]
- Liu, X.; Cui, H.; Li, M.; Chai, Z.; Wang, H.; Jin, X.; Dai, F.; Liu, Y.; Zhou, B. Tumor Killing by a Dietary Curcumin Mono-Carbonyl Analog that Works as a Selective ROS Generator via TrxR Inhibition. Eur. J. Med. Chem. 2023, 250, 115191. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, L.Z.; Fan, Y.L.; Guo, C.H.; Lv, X.M.; Zhou, Z.Y.; Huang, H.D.; Miao, D.D.; Zhang, S.P.; Li, X.Y.; et al. Discovery of Novel Hydroxyamidine Based Indoleamine 2,3-Dioxygenase 1 (IDO1) and Thioredoxin Reductase 1 (TrxR1) Dual Inhibitors. Eur. J. Med. Chem. 2023, 245, 114860. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Huang, S.; Liu, Y.; Chang, X.; Liang, Y.; Li, X.; Xu, Z.; Wang, S.; Lu, Y.; Liu, Y.; et al. Biotin-Targeted Au(I) Radiosensitizer for Cancer Synergistic Therapy by Intervening with Redox Homeostasis and Inducing Ferroptosis. J. Med. Chem. 2022, 65, 8401–8415. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Zheng, Y.; Duan, D.; Dai, F.; Zhou, B. Michael Acceptor-Dependent Pro-oxidative Intervention against Angiogenesis by [6]-Dehydroshogaol, a Pungent Constituent of Ginger. Eur. J. Pharmacol. 2022, 925, 174990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, Q.; Ma, D. Inhibition of Thioredoxin Reductase by Natural Anticancer Candidate Beta-Lapachone Accounts for Triggering Redox Activation-Mediated HL-60 Cell Apoptosis. Free Radical Biol. Med. 2022, 180, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Wang, Y.; Jin, X.; Li, M.; Wang, L.; Yan, Y.; Xiao, J.; Song, P.; Wang, X. Natural Diterpenoid Eriocalyxin B Covalently Modifies Glutathione and Selectively Inhibits Thioredoxin Reductase Inducing Potent Oxidative Stress-Mediated Apoptosis in Colorectal Carcinoma RKO Cells. Free Radical Biol. Med. 2021, 177, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.P.; Zhou, J.; Fan, Q.Z.; Lv, X.M.; Wang, T.; Wang, F.; Chen, Y.; Hong, S.Y.; Liu, X.P.; Xu, B.S.; et al. Discovery of Hydroxytyrosol as Thioredoxin Reductase 1 Inhibitor to Induce Apoptosis and G(1)/S Cell Cycle Arrest in Human Colorectal Cancer Cells via ROS Generation. Exp. Ther. Med. 2021, 22, 829. [Google Scholar] [CrossRef]
- Fan, Q.Z.; Zhou, J.; Zhu, Y.B.; He, L.J.; Miao, D.D.; Zhang, S.P.; Liu, X.P.; Zhang, C. Design, Synthesis, and Biological Evaluation of a Novel Indoleamine 2,3-Dioxigenase 1 (IDO1) and Thioredoxin Reductase (TrxR) Dual Inhibitor. Bioorg. Chem. 2020, 105, 104401. [Google Scholar] [CrossRef]
- Sarnik, J.; Gajek, A.; Toma, M.; Pawelczyk, J.; Rykowski, S.; Olejniczak, A.; Sliwinski, T.; Bielski, R.; Witczak, Z.J.; Poplawski, T. (1-4)-Thiodisaccharides as Anticancer Agents. Part 5. Evaluation of Anticancer Activity and Investigation of Mechanism of Action. Bioorg. Med. Chem. Lett. 2020, 30, 126904. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Wei, Z.; Tao, L.; Sheng, X.; Wang, S.; Chen, J.; Ruan, J.; Liu, Z.; Cao, Y.; et al. Targeting Thioredoxin System with an Organosulfur Compound, Diallyl Trisulfide (DATS), Attenuates Progression and Metastasis of Triple-Negative Breast Cancer (TNBC). Cell. Physiol. Biochem. 2018, 50, 1945–1963. [Google Scholar] [CrossRef]
- Dai, F.; Liu, G.Y.; Li, Y.; Yan, W.J.; Wang, Q.; Yang, J.; Lu, D.L.; Ding, D.J.; Lin, D.; Zhou, B. Insights into the Importance for Designing Curcumin-Inspired Anticancer Agents by a Prooxidant Strategy: The Case of Diarylpentanoids. Free Radical Biol. Med. 2015, 85, 127–137. [Google Scholar] [CrossRef]
- Engelman, R.; Ziv, T.; Arner, E.S.J.; Benhar, M. Inhibitory Nitrosylation of Mammalian Thioredoxin Reductase 1: Molecular Characterization and Evidence for Its Functional Role in Cellular Nitroso-Redox Imbalance. Free Radical Biol. Med. 2016, 97, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Zhao, Y.; Zhao, J.; Ouyang, Y.; Qian, W.; Hou, Y.; Yu, C.; Ren, X.; Zou, L.; Fang, J.; et al. A Fluorescent Probe for Specifically Measuring the Overall Thioredoxin and Glutaredoxin Reducing Activity in Bacterial Cells. Analyst 2022, 147, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kim, H.; Xu, F.; Han, J.; Yao, Q.; Wang, J.; Pu, K.; Peng, X.; Yoon, J. Activity-Based NIR Fluorescent Probes Based on the Versatile Hemicyanine Scaffold: Design Strategy, Biomedical Applications, and Outlook. Chem. Soc. Rev. 2022, 51, 1795–1835. [Google Scholar] [CrossRef]
- Meng, X.; Pang, X.; Zhang, K.; Gong, C.; Yang, J.; Dong, H.; Zhang, X. Recent Advances in Near-Infrared-II Fluorescence Imaging for Deep-Tissue Molecular Analysis and Cancer Diagnosis. Small 2022, 18, e2202035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, S.; Ma, H.; Wang, H.; Zhang, R.; Zhang, X.D. Activatable NIR-II Organic Fluorescent Probes for Bioimaging. Theranostics 2022, 12, 3345–3371. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ma, T.; Chang, B.; Fang, J. Recent Progress on NIR Fluorescent Probes for Enzymes. Molecules 2022, 27, 5922. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, J.; Zhang, Z.; Liu, Y.; Fang, J. A Fast Response and Red Emission Probe for Mammalian Thioredoxin Reductase. Chem. Commun. 2016, 52, 12060–12063. [Google Scholar] [CrossRef]
- Zhao, J.; Qu, Y.; Gao, H.; Zhong, M.; Li, X.; Zhang, F.; Chen, Y.; Gan, L.; Hu, G.; Zhang, H.; et al. Loss of Thioredoxin Reductase Function in a Mouse Stroke Model Disclosed by a Two-Photon Fluorescent Probe. Chem. Commun. 2020, 56, 14075–14078. [Google Scholar] [CrossRef]
- Juvekar, V.; Lee, H.W.; Lee, D.J.; Kim, H.M. Two-Photon Fluorescent Probes for Quantitative Bio-Imaging Analysis in Live Tissues. TrAC Trends Anal. Chem. 2022, 157, 116787. [Google Scholar] [CrossRef]
- Kim, H.M.; Cho, B.R. Small-Molecule Two-Photon Probes for Bioimaging Applications. Chem. Rev. 2015, 115, 5014–5055. [Google Scholar] [CrossRef]
- Bort, G.; Gallavardin, T.; Ogden, D.; Dalko, P.I. From One-Photon to Two-Photon Probes: “Caged” Compounds, Actuators, and Photoswitches. Angew. Chem. Int. Ed. 2013, 52, 4526–4537. [Google Scholar] [CrossRef]
- Miranda-Vizuete, A.; Damdimopoulos, A.E.; Spyrou, G. The Mitochondrial Thioredoxin System. Antioxid. Redox Signal. 2000, 2, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in Cancer: Initiators, Amplifiers or an Achilles’ Heel? Nat. Rev. Cancer 2014, 14, 709–721. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.T.; Beal, M.F. Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases. Nature 2006, 443, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Abou-Sleiman, P.M.; Muqit, M.M.; Wood, N.W. Expanding Insights of Mitochondrial Dysfunction in Parkinson’s Disease. Nat. Rev. Neurosci. 2006, 7, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, H.; Zhang, L.; Cui, Y.; Liu, X.; Fang, J. A Small Molecule Probe Reveals Declined Mitochondrial Thioredoxin Reductase Activity in a Parkinson’s Disease Model. Chem. Commun. 2016, 52, 2296–2299. [Google Scholar] [CrossRef]
- Zhao, Y.; Zuo, X.; Liu, S.; Qian, W.; Tang, X.; Lu, J. A Fluorescent Probe to Detect Quick Disulfide Reductase Activity in Bacteria. Antioxidants 2022, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.P.; Qi, F.J.; Zheng, Y.L.; Duan, D.C.; Bao, X.Z.; Dai, F.; Zhang, S.; Zhou, B. Fast Imaging of Mitochondrial Thioredoxin Reductase Using a Styrylpyridinium-Based Two-Photon Ratiometric Fluorescent Probe. Anal. Chem. 2022, 94, 4970–4978. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, J.S.; Sessler, J.L. Small Molecule-Based Ratiometric Fluorescence Probes for Cations, Anions, and Biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. [Google Scholar] [CrossRef] [Green Version]
- Mafireyi, T.J.; Laws, M.; Bassett, J.W.; Cassidy, P.B.; Escobedo, J.O.; Strongin, R.M. A Diselenide Turn-On Fluorescent Probe for the Detection of Thioredoxin Reductase. Angew. Chem. Int. Ed. 2020, 59, 15147–15151. [Google Scholar] [CrossRef]
- Jia, H.; Hu, G.; Shi, D.; Gan, L.; Zhang, H.; Yao, X.; Fang, J. Fluorophore-Dependent Cleavage of Disulfide Bond Leading to a Highly Selective Fluorescent Probe of Thioredoxin. Anal. Chem. 2019, 91, 8524–8531. [Google Scholar] [CrossRef]
- Liang, B.; Shao, W.; Zhu, C.; Wen, G.; Yue, X.; Wang, R.; Quan, J.; Du, J.; Bu, X. Mitochondria-Targeted Approach: Remarkably Enhanced Cellular Bioactivities of TPP2a as Selective Inhibitor and Probe toward TrxR. ACS Chem. Biol. 2016, 11, 425–434. [Google Scholar] [CrossRef]
- Prost, M.; Canaple, L.; Samarut, J.; Hasserodt, J. Tagging Live Cells that Express Specific Peptidase Activity with Solid-State Fluorescence. ChemBioChem 2014, 15, 1413–1417. [Google Scholar] [CrossRef]
- Huang, Z.; Terpetschnig, E.; You, W.; Haugland, R.P. 2-(2′ -Phosphoryloxyphenyl)-4 (3H)-Quinazolinone Derivatives as Fluorogenic Precipitating Substrates of Phosphatases. Anal. Biochem. 1992, 207, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Felber, J.G.; Zeisel, L.; Poczka, L.; Scholzen, K.; Busker, S.; Maier, M.S.; Theisen, U.; Brandstadter, C.; Becker, K.; Arner, E.S.J.; et al. Selective, Modular Probes for Thioredoxins Enabled by Rational Tuning of a Unique Disulfide Structure Motif. J. Am. Chem. Soc. 2021, 143, 8791–8803. [Google Scholar] [CrossRef] [PubMed]
- Butora, G.; Qi, N.; Fu, W.; Nguyen, T.; Huang, H.C.; Davies, I.W. Cyclic-Disulfide-Based Prodrugs for Cytosol-Specific Drug Delivery. Angew. Chem. Int. Ed. 2014, 53, 14046–14050. [Google Scholar] [CrossRef]
- Felber, J.G.; Kitowski, A.; Zeisel, L.; Maier, M.S.; Heise, C.; Thorn-Seshold, J.; Thorn-Seshold, O. Cyclic Dichalcogenides Extend the Reach of Bioreductive Prodrugs to Harness Thiol/Disulfide Oxidoreductases: Applications to seco-Duocarmycins Targeting the Thioredoxin System. ACS Cent. Sci. 2023, 9, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Luo, F.; Chi, W.; Tang, Y.; Liu, X.; Lin, Q. Activatable Selenium-Containing Fluorescent Apoptotic Agent for Biosensing and Tracing Cancer Cell Apoptosis. Sens. Actuators B 2020, 311, 127915. [Google Scholar] [CrossRef]
- Kong, F.; Ge, L.; Pan, X.; Xu, K.; Liu, X.; Tang, B. A Highly Selective Near-Infrared Fluorescent Probe for Imaging H(2)Se in Living Cells and in vivo. Chem. Sci. 2016, 7, 1051–1056. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Alifu, N.; Cai, Y.; Lam, J.W.Y.; He, X.; Su, H.; Zhang, P.; Qian, J.; Tang, B.Z. Synthesis of an Efficient Far-Red/Near-Infrared Luminogen with AIE Characteristics for in vivo Bioimaging Applications. Chem. Commun. 2019, 55, 5615–5618. [Google Scholar] [CrossRef]
- Tian, Y.; Xin, F.; Jing, J.; Zhang, X. Fluorescence Imaging of Lysosomal Hydrogen Selenide under Oxygen-Controlled Conditions. J. Mater. Chem. B 2019, 7, 2829–2834. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, B.; Yang, W.; Jing, J.; Zhang, X. A Fluorescent Probe for Differentiating Cys, Hcy and GSH via a Stepwise Interaction. Sens. Actuators B 2018, 262, 345–349. [Google Scholar] [CrossRef]
- Deng, Z.; Yu, L.; Cao, W.; Zheng, W.; Chen, T. A Selenium-Containing Ruthenium Complex as a Cancer Radiosensitizer, Rational Design and the Important Role of ROS-Mediated Signalling. Chem. Commun. 2015, 51, 2637–2640. [Google Scholar] [CrossRef]
- Kong, F.; Hu, B.; Gao, Y.; Xu, K.; Pan, X.; Huang, F.; Zheng, Q.; Chen, H.; Tang, B. Fluorescence Imaging of Selenol in HepG2 Cell Apoptosis Induced by Na2SeO3. Chem. Commun. 2015, 51, 3102–3105. [Google Scholar] [CrossRef]
- Ekambaram, R.; Enkvist, E.; Manoharan, G.B.; Ugandi, M.; Kasari, M.; Viht, K.; Knapp, S.; Issinger, O.-G.; Uri, A. Benzoselenadiazole-Based Responsive Long-Lifetime Photoluminescent Probes for Protein Kinases. Chem. Commun. 2014, 50, 4096–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.L.; Zhong, M.; Song, Z.L.; Shen, Y.K.; Zhao, L.; Fang, J. Synthesis and Discovery of Baylis-Hillman Adducts as Potent and Selective Thioredoxin Reductase Inhibitors for Cancer Treatment. Bioorg. Med. Chem. 2023, 79, 117169. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, J.; Sun, S.; Lin, W.; Li, Y.; Lu, Q.; Li, F.; Yang, Z.; Lu, Y.; Liu, W. Mecheliolide Elicits ROS-Mediated ERS Driven Immunogenic Cell Death in Hepatocellular Carcinoma. Redox Biol. 2022, 54, 102351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, S.; Xu, W.; Yang, R.; Yang, Y.; Guo, J.; Ma, K.; Xu, J. Thioredoxin Reductase 1 Inhibitor Shikonin Promotes Cell Necroptosis via SecTRAPs Generation and Oxygen-Coupled Redox Cycling. Free Radical Biol. Med. 2022, 180, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, S.; Xu, W.; Zhang, Y.; Yang, R.; Ma, K.; Zhang, J.; Xu, J. Piperlongumine Inhibits Thioredoxin Reductase 1 by Targeting Selenocysteine Residues and Sensitizes Cancer Cells to Erastin. Antioxidants 2022, 11, 710. [Google Scholar] [CrossRef]
- Sang, J.; Li, W.; Diao, H.J.; Fan, R.Z.; Huang, J.L.; Gan, L.; Zou, M.F.; Tang, G.H.; Yin, S. Jolkinolide B Targets Thioredoxin and Glutathione Systems to Induce ROS-Mediated Paraptosis and Apoptosis in Bladder Cancer Cells. Cancer Lett. 2021, 509, 13–25. [Google Scholar] [CrossRef]
- Qian, J.; Xu, Z.; Zhu, P.; Meng, C.; Liu, Y.; Shan, W.; He, A.; Gu, Y.; Ran, F.; Zhang, Y.; et al. A Derivative of Piperlongumine and Ligustrazine as a Potential Thioredoxin Reductase Inhibitor in Drug-Resistant Hepatocellular Carcinoma. J. Nat. Prod. 2021, 84, 3161–3168. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, S.; Zhao, J.; Yang, H.; Yin, F.; Ding, M.; Luo, J.; Wang, X.; Kong, L. Design and SAR of Withangulatin A Analogues that Act as Covalent TrxR Inhibitors through the Michael Addition Reaction Showing Potential in Cancer Treatment. J. Med. Chem. 2020, 63, 11195–11214. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, J.; Han, X.; Xu, J.; Wu, Y.; Fang, J. Promotion of HeLa Cells Apoptosis by Cynaropicrin Involving Inhibition of Thioredoxin Reductase and Induction of Oxidative Stress. Free Radical Biol. Med. 2019, 135, 216–226. [Google Scholar] [CrossRef]
- Zhang, B.; Duan, D.; Ge, C.; Yao, J.; Liu, Y.; Li, X.; Fang, J. Synthesis of Xanthohumol Analogues and Discovery of Potent Thioredoxin Reductase Inhibitor as Potential Anticancer Agent. J. Med. Chem. 2015, 58, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Fang, J. Shikonin Targets Cytosolic Thioredoxin Reductase to Induce ROS-Mediated Apoptosis in Human Promyelocytic Leukemia HL-60 Cells. Free Radical Biol. Med. 2014, 70, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Sun, J.; Ge, C.; Peng, S.; Fang, J. Gambogic Acid Induces Apoptosis in Hepatocellular Carcinoma SMMC-7721 Cells by Targeting Cytosolic Thioredoxin Reductase. Free Radical Biol. Med. 2014, 69, 15–25. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Y.; Liang, B.; Xing, B.; Wen, G.; Wang, S.; Yue, X.; Zhu, C.; Du, J.; Bu, X. A Furanyl Acryl Conjugated Coumarin as an Efficient Inhibitor and a Highly Selective Off–On Fluorescent Probe for Covalent Labelling of Thioredoxin Reductase. Chem. Commun. 2014, 50, 6987–6990. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, Z.; Shao, W.Y.; Liu, X.; Jing, D.P.; Yu, Y.J.; An, L.K.; Huang, S.L.; Bu, X.Z.; Huang, Z.S.; et al. Synthesis and Evaluation of Curcumin Analogues as Potential Thioredoxin Reductase Inhibitors. Bioorg. Med. Chem. 2008, 16, 8035–8041. [Google Scholar] [CrossRef]
- Zhou, B.; Huang, J.; Zuo, Y.; Li, B.; Guo, Q.; Cui, B.; Shao, W.; Du, J.; Bu, X. 2a, a Novel Curcumin Analog, Sensitizes Cisplatin-Resistant A549 Cells to Cisplatin by Inhibiting Thioredoxin Reductase Concomitant Oxidative Stress Damage. Eur. J. Pharmacol. 2013, 707, 130–139. [Google Scholar] [CrossRef]
- MP, A.; Pardhiya, S.; Rajamani, P. Carbon Dots: An Excellent Fluorescent Probe for Contaminant Sensing and Remediation. Small 2022, 18, e2105579. [Google Scholar]
- Li, X.; Zhao, S.; Li, B.; Yang, K.; Lan, M.; Zeng, L. Advances and Perspectives in Carbon Dot-Based Fluorescent Probes: Mechanism, and Application. Coord. Chem. Rev. 2021, 431, 213686. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Singh, A.; Garg, N.; Singh, N. Carbon Dot Based, Naphthalimide Coupled FRET Pair for Highly Selective Ratiometric Detection of Thioredoxin Reductase and Cancer Screening. ACS Appl. Mater. Interfaces 2017, 9, 25847–25856. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, J.S.; Singh, A.; Garg, N.; Kaur, N.; Singh, N. Carbon Dots as Analytical Tools for Sensing of Thioredoxin Reductase and Screening of Cancer Cells. Analyst 2018, 143, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Yu, S.B.; Wei, J.S.; Xiong, H.M. Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano 2016, 10, 484–491. [Google Scholar] [CrossRef]
- Banerjee, S.; Veale, E.B.; Phelan, C.M.; Murphy, S.A.; Tocci, G.M.; Gillespie, L.J.; Frimannsson, D.O.; Kelly, J.M.; Gunnlaugsson, T. Recent Advances in the Development of 1,8-Naphthalimide Based DNA Targeting Binders, Anticancer and Fluorescent Cellular Imaging Agents. Chem. Soc. Rev. 2013, 42, 1601–1618. [Google Scholar] [CrossRef] [Green Version]
- Kilpin, K.J.; Clavel, C.M.; Edafe, F.; Dyson, P.J. Naphthalimide-Tagged Ruthenium–Arene Anticancer Complexes: Combining Coordination with Intercalation. Organometallics 2012, 31, 7031–7039. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, H.; Zhang, X.; Lu, J.; Holmgren, A. Thioredoxin 1 Is Inactivated due to Oxidation Induced by Peroxiredoxin under Oxidative Stress and Reactivated by the Glutaredoxin System. J. Biol. Chem. 2013, 288, 32241–32247. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Du, Y.; Zhang, X.; Lu, J.; Holmgren, A. Glutaredoxin 2 Reduces both Thioredoxin 2 and Thioredoxin 1 and Protects Cells from Apoptosis Induced by Auranofin and 4-Hydroxynonenal. Antioxid. Redox Signal. 2014, 21, 669–681. [Google Scholar] [CrossRef] [Green Version]
- Iverson, S.V.; Eriksson, S.; Xu, J.; Prigge, J.R.; Talago, E.A.; Meade, T.A.; Meade, E.S.; Capecchi, M.R.; Arner, E.S.; Schmidt, E.E. A Txnrd1-Dependent Metabolic Switch Alters Hepatic Lipogenesis, Glycogen Storage, and Detoxification. Free Radical Biol. Med. 2013, 63, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Prigge, J.R.; Eriksson, S.; Iverson, S.V.; Meade, T.A.; Capecchi, M.R.; Arnér, E.S.J.; Schmidt, E.E. Hepatocyte DNA Replication in Growing Liver Requires either Glutathione or a Single Allele of TXNRD1. Free Radical Biol. Med. 2012, 52, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Rollins, M.F.; van der Heide, D.M.; Weisend, C.M.; Kundert, J.A.; Comstock, K.M.; Suvorova, E.S.; Capecchi, M.R.; Merrill, G.F.; Schmidt, E.E. Hepatocytes Lacking Thioredoxin Reductase 1 Have Normal Replicative Potential during Development and Regeneration. J. Cell Sci. 2010, 123, 2402–2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Giménez-Cassina, A.; Petrus, P.; Conrad, M.; Rydén, M.; Arnér, E.S.J. Thioredoxin Reductase 1 Suppresses Adipocyte Differentiation and Insulin Responsiveness. Sci. Rep. 2016, 6, 28080. [Google Scholar] [CrossRef] [Green Version]
- Bjorklund, G.; Zou, L.; Peana, M.; Chasapis, C.T.; Hangan, T.; Lu, J.; Maes, M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants 2022, 11, 2161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, Y.; Li, X.; Xu, J.; Fang, J. Small Molecules to Target the Selenoprotein Thioredoxin Reductase. Chem. Asian J. 2018, 13, 3593–3600. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Wang, Y.; Pan, D.; Wang, L.; Xiao, J.; Song, P.; Jin, X.; Wang, X. Targeting Thioredoxin Reductase by Deoxyelephantopin from Elephantopus scaber Triggers Cancer Cell Apoptosis. Arch. Biochem. Biophys. 2021, 711, 109028. [Google Scholar] [CrossRef]
- Duan, D.; Wang, Y.; Pan, D.; Jin, X.; Yan, Y.; Song, P.; Wang, L.; Xiao, J.; Wang, Z.; Wang, X. Rheumatoid Arthritis Drug Sinomenine Induces Apoptosis of Cervical Tumor Cells by Targeting Thioredoxin Reductase in vitro and in vivo. Bioorg. Chem. 2022, 122, 105711. [Google Scholar] [CrossRef]
- Song, Z.L.; Zhang, J.; Xu, Q.; Shi, D.; Yao, X.; Fang, J. Structural Modification of Aminophenylarsenoxides Generates Candidates for Leukemia Treatment via Thioredoxin Reductase Inhibition. J. Med. Chem. 2021, 64, 16132–16146. [Google Scholar] [CrossRef]
- Watson, W.H.; Pohl, J.; Montfort, W.R.; Stuchlik, O.; Reed, M.S.; Powis, G.; Jones, D.P. Redox Potential of Human Thioredoxin 1 and Identification of a Second Dithiol/Disulfide Motif. J. Biol. Chem. 2003, 278, 33408–33415. [Google Scholar] [CrossRef] [Green Version]
- Aslund, F.; Berndt, K.D.; Holmgren, A. Redox Potentials of Glutaredoxins and Other Thiol-Disulfide Oxidoreductases of the Thioredoxin Superfamily Determined by Direct Protein-Protein Redox Equilibria. J. Biol. Chem. 1997, 272, 30780–30786. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Arscott, L.D.; Ballou, D.P.; Williams, C.H. The Relationship of the Redox Potentials of Thioredoxin and Thioredoxin Reductase from Drosophila melanogaster to the Enzymatic Mechanism: Reduced Thioredoxin Is the Reductant of Glutathione in Drosophila. Biochemistry 2007, 46, 7875–7885. [Google Scholar] [CrossRef]
- Besse, D.; Siedler, F.; Diercks, T.; Kessler, H.; Moroder, L. The Redox Potential of Selenocystine in Unconstrained Cyclic Peptides. Angew. Chem. Int. Ed. 1997, 36, 883–885. [Google Scholar] [CrossRef]
- Chang, B.; Xu, Q.; Guo, H.; Zhong, M.; Shen, R.; Zhao, L.; Zhao, J.; Ma, T.; Chu, Y.; Zhang, J.; et al. Puromycin Prodrug Activation by Thioredoxin Reductase Overcomes Its Promiscuous Cytotoxicity. J. Med. Chem. 2023, 66, 3250–3261. [Google Scholar] [CrossRef]
- Li, X.; Hou, Y.; Meng, X.; Ge, C.; Ma, H.; Li, J.; Fang, J. Selective Activation of a Prodrug by Thioredoxin Reductase Providing a Strategy to Target Cancer Cells. Angew. Chem. Int. Ed. 2018, 57, 6141–6145. [Google Scholar] [CrossRef]
- Zong, L.; Bartolami, E.; Abegg, D.; Adibekian, A.; Sakai, N.; Matile, S. Epidithiodiketopiperazines: Strain-Promoted Thiol-Mediated Cellular Uptake at the Highest Tension. ACS Cent. Sci. 2017, 3, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.A.; Whitesides, G.M. Predicting the Stability of Cyclic Disulfides by Molecular Modeling: Effective Concentrations in Thiol-Disulfide Interchange and the Design of Strongly Reducing Dithiols. J. Am. Chem. Soc. 2002, 112, 6296–6303. [Google Scholar] [CrossRef]
- Houk, J.; Whitesides, G.M. Structure-Reactivity Relations for Thiol-Disulfide Interchange. J. Am. Chem. Soc. 2002, 109, 6825–6836. [Google Scholar] [CrossRef]
- Fava, A.; Iliceto, A.; Camera, E. Kinetics of the Thiol-Disulfide Exchange. J. Am. Chem. Soc. 2002, 79, 833–838. [Google Scholar] [CrossRef]
- Singh, R.; Whitesides, G.M. Degenerate Intermolecular Thiolate-Disulfide Interchange Involving Cyclic Five-Membered Disulfides Is Faster by.apprx.103 than That Involving Six- or Seven-Membered Disulfides. J. Am. Chem. Soc. 2002, 112, 6304–6309. [Google Scholar] [CrossRef]
- Lees, W.J.; Whitesides, G.M. Equilibrium Constants for Thiol-Disulfide Interchange Reactions: A Coherent, Corrected Set. J. Org. Chem. 2002, 58, 642–647. [Google Scholar] [CrossRef]
- Laurent, Q.; Sakai, N.; Matile, S. The Opening of 1,2-Dithiolanes and 1,2-Diselenolanes: Regioselectivity, Rearrangements, and Consequences for Poly(disulfide)s, Cellular Uptake and Pyruvate Dehydrogenase Complexes. Helv. Chim. Acta 2019, 102, e1800209. [Google Scholar] [CrossRef] [Green Version]
- Laurent, Q.; Martinent, R.; Lim, B.; Pham, A.T.; Kato, T.; Lopez-Andarias, J.; Sakai, N.; Matile, S. Thiol-Mediated Uptake. JACS Au 2021, 1, 710–728. [Google Scholar] [CrossRef]
- Li, T.; Gao, W.; Liang, J.; Zha, M.; Chen, Y.; Zhao, Y.; Wu, C. Biscysteine-Bearing Peptide Probes to Reveal Extracellular Thiol-Disulfide Exchange Reactions Promoting Cellular Uptake. Anal. Chem. 2017, 89, 8501–8508. [Google Scholar] [CrossRef]
- Chuard, N.; Gasparini, G.; Moreau, D.; Lorcher, S.; Palivan, C.; Meier, W.; Sakai, N.; Matile, S. Strain-Promoted Thiol-Mediated Cellular Uptake of Giant Substrates: Liposomes and Polymersomes. Angew. Chem. Int. Ed. 2017, 56, 2947–2950. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, G.; Sargsyan, G.; Bang, E.-K.; Sakai, N.; Matile, S. Ring Tension Applied to Thiol-Mediated Cellular Uptake. Angew. Chem. Int. Ed. 2015, 54, 7328–7331. [Google Scholar] [CrossRef]
- Carmine, A.; Domoto, Y.; Sakai, N.; Matile, S. Comparison of Lipoic and Asparagusic Acid for Surface-Initiated Disulfide-Exchange Polymerization. Chem. Eur. J. 2013, 19, 11558–11563. [Google Scholar] [CrossRef]
- Kato, T.; Lim, B.; Cheng, Y.; Pham, A.T.; Maynard, J.; Moreau, D.; Poblador-Bahamonde, A.I.; Sakai, N.; Matile, S. Cyclic Thiosulfonates for Thiol-Mediated Uptake: Cascade Exchangers, Transporters, Inhibitors. JACS Au 2022, 2, 839–852. [Google Scholar] [CrossRef]
- Abegg, D.; Gasparini, G.; Hoch, D.G.; Shuster, A.; Bartolami, E.; Matile, S.; Adibekian, A. Strained Cyclic Disulfides Enable Cellular Uptake by Reacting with the Transferrin Receptor. J. Am. Chem. Soc. 2016, 139, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.F.L.; Kithil, M.; Cardoso, M.C.; Lehmann, M.; Hackenberger, C.P.R. Cellular Uptake of Large Biomolecules Enabled by Cell-Surface-Reactive Cell-Penetrating Peptide Additives. Nat. Chem. 2021, 13, 530–539. [Google Scholar] [CrossRef]
- Barcan, G.A.; Zhang, X.; Waymouth, R.M. Structurally Dynamic Hydrogels Derived from 1,2-Dithiolanes. J. Am. Chem. Soc. 2015, 137, 5650–5653. [Google Scholar] [CrossRef]
- Scheutz, G.M.; Rowell, J.L.; Ellison, S.T.; Garrison, J.B.; Angelini, T.E.; Sumerlin, B.S. Harnessing Strained Disulfides for Photocurable Adaptable Hydrogels. Macromolecules 2020, 53, 4038–4046. [Google Scholar] [CrossRef]
- Singh, R.; Whitesides, G.M. Thiol-Disulfide interchange. In Sulphur-Containing Functional Groups (1993); Patai, S., Rappoport, Z., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1993; pp. 633–658. [Google Scholar]
- Sakai, N.; Lista, M.; Kel, O.; Sakurai, S.; Emery, D.; Mareda, J.; Vauthey, E.; Matile, S. Self-Organizing Surface-Initiated Polymerization: Facile Access to Complex Functional Systems. J. Am. Chem. Soc. 2011, 133, 15224–15227. [Google Scholar] [CrossRef]
- Cleland, W.W. Dithiothreitol, a New Protective Reagent for SH Groups*. Biochemistry 1964, 3, 480–482. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Lilburn, J.E.; Szajewski, R.P. Rates of Thiol-Disulfide Interchange Reactions between Mono- and Dithiols and Ellman’s Reagent. J. Org. Chem. 1977, 42, 332–338. [Google Scholar] [CrossRef]
- Lukesh, J.C., 3rd; Palte, M.J.; Raines, R.T. A Potent, Versatile Disulfide-Reducing Agent from Aspartic Acid. J. Am. Chem. Soc. 2012, 134, 4057–4059. [Google Scholar] [CrossRef]
- Lee, M.H.; Yang, Z.; Lim, C.W.; Lee, Y.H.; Dongbang, S.; Kang, C.; Kim, J.S. Disulfide-Cleavage-Triggered Chemosensors and Their Biological Applications. Chem. Rev. 2013, 113, 5071–5109. [Google Scholar] [CrossRef]
- Jung, H.S.; Chen, X.; Kim, J.S.; Yoon, J. Recent Progress in Luminescent and Colorimetric Chemosensors for Detection of Thiols. Chem. Soc. Rev. 2013, 42, 6019–6031. [Google Scholar] [CrossRef]
- Lee, M.H.; Jeon, H.M.; Han, J.H.; Park, N.; Kang, C.; Sessler, J.L.; Kim, J.S. Toward a Chemical Marker for Inflammatory Disease: A Fluorescent Probe for Membrane-Localized Thioredoxin. J. Am. Chem. Soc. 2014, 136, 8430–8437. [Google Scholar] [CrossRef]
- Lee, M.H.; Han, J.H.; Kwon, P.S.; Bhuniya, S.; Kim, J.Y.; Sessler, J.L.; Kang, C.; Kim, J.S. Hepatocyte-Targeting Single Galactose-Appended Naphthalimide: A Tool for Intracellular Thiol Imaging in vivo. J. Am. Chem. Soc. 2012, 134, 1316–1322. [Google Scholar] [CrossRef]
- Lee, M.H.; Han, J.H.; Lee, J.H.; Choi, H.G.; Kang, C.; Kim, J.S. Mitochondrial Thioredoxin-Responding Off-On Fluorescent Probe. J. Am. Chem. Soc. 2012, 134, 17314–17319. [Google Scholar] [CrossRef]
- Wei, X.; Zhong, M.; Wang, S.; Li, L.; Song, Z.L.; Zhang, J.; Xu, J.; Fang, J. Synthesis and Biological Evaluation of Disulfides as Anticancer Agents with Thioredoxin Inhibition. Bioorg. Chem. 2021, 110, 104814. [Google Scholar] [CrossRef]
- Cebula, M.; Moolla, N.; Capovilla, A.; Arner, E.S.J. The Rare TXNRD1_v3 (“v3”) Splice Variant of Human Thioredoxin Reductase 1 Protein Is Targeted to Membrane Rafts by N-Acylation and Induces Filopodia Independently of Its Redox Active Site Integrity. J. Biol. Chem. 2013, 288, 10002–10011. [Google Scholar] [CrossRef] [Green Version]
- Anestål, K.; Arnér, E.S.J. Rapid Induction of Cell Death by Selenium-compromised Thioredoxin Reductase 1 but Not by the Fully Active Enzyme Containing Selenocysteine. J. Biol. Chem. 2003, 278, 15966–15972. [Google Scholar] [CrossRef] [Green Version]
- Hashemy, S.I.; Ungerstedt, J.S.; Avval, F.Z.; Holmgren, A. Motexafin Gadolinium, a Tumor-Selective Drug Targeting Thioredoxin Reductase and Ribonucleotide Reductase. J. Biol. Chem. 2006, 281, 10691–10697. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Zhang, L.; Song, Y.; Wang, B.; Zhang, B.; Cui, X.; Hu, G.; Liu, Y.; Wu, J.; Fang, J. Small Molecule Inhibitors of Mammalian Thioredoxin Reductase. Free Radical Biol. Med. 2012, 52, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kim, D.; Yao, Q.; Ge, H.; Chung, J.; Fan, J.; Wang, J.; Peng, X.; Yoon, J. Activity-Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image-Guided Surgery. Angew. Chem. Int. Ed. 2021, 60, 17268–17289. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Y.; Xu, K.; Dai, Z. Current Trends and Key Considerations in the Clinical Translation of Targeted Fluorescent Probes for Intraoperative Navigation. Aggregate 2021, 2, e23. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Li, X.; Han, X.; Liu, R.; Fang, J. Small Molecule Inhibitors of Mammalian Thioredoxin Reductase as Potential Anticancer Agents: An Update. Med. Res. Rev. 2019, 39, 5–39. [Google Scholar] [CrossRef] [Green Version]
- Gromer, S.; Urig, S.; Becker, K. The Thioredoxin System—From Science to Clinic. Med. Res. Rev. 2004, 24, 40–89. [Google Scholar] [CrossRef]
- Snyder, R.M.; Mirabelli, C.K.; Crooke, S.T. Cellular Interactions of Auranofin and a Related Gold Complex with Raw 264.7 Macrophages. Biochem. Pharmacol. 1987, 36, 647–654. [Google Scholar] [CrossRef]
- Zhang, X.; Selvaraju, K.; Saei, A.A.; D’Arcy, P.; Zubarev, R.A.; Arnér, E.S.J.; Linder, S. Repurposing of Auranofin: Thioredoxin Reductase Remains a Primary Target of the Drug. Biochimie 2019, 162, 46–54. [Google Scholar] [CrossRef]
- Coffer, M.T.; III, C.F.S.; Hormann, A.L.; Mirabelli, C.K.; Crooke, S.T. Thiol Competition for Et3PAuS-Albumin: A Nonenzymatic Mechanism for Et3PO Formation. J. Inorg. Biochem. 1987, 30, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Reglinski, J.; Hoey, S.; Smith, W.E. Exchange Reactions between Disulphides and Myocrisin: An in vitro Model for a Mechanism in Chrysotherapy. Inorg. Chim. Acta 1988, 152, 261–264. [Google Scholar] [CrossRef]
- Bachman, R.E.; Bodolosky-Bettis, S.A.; Pyle, C.J.; Gray, M.A. Reversible Oxidative Addition and Reductive Elimination of Fluorinated Disulfides at Gold(I) Thiolate Complexes: A New Ligand Exchange Mechanism. J. Am. Chem. Soc. 2008, 130, 14303–14310. [Google Scholar] [CrossRef] [PubMed]
- Albert, A.; Brauckmann, C.; Blaske, F.; Sperling, M.; Engelhard, C.; Karst, U. Speciation Analysis of the Antirheumatic Agent Auranofin and Its Thiol Adducts by LC/ESI-MS and LC/ICP-MS. J. Anal. At. Spectrom. 2012, 27, 975–981. [Google Scholar] [CrossRef]
- Johansen-Leete, J.; Payne, R.J. Selenium Is the Chalcogen of Choice for Selective Reporting of Thioredoxin Reductase Activity. Chem 2022, 8, 1175–1177. [Google Scholar] [CrossRef]
- Zeisel, L. Chemical Probes of Redox Enzymes by Rational, Reactivity-Based Design. Chem 2022, 8, 1167–1169. [Google Scholar] [CrossRef]
- Hondal, R.J. Flux versus Poise: Measuring the Dynamic Cellular Activity of the Thioredoxin System with a Redox Probe. Redox Biol. 2022, 54, 102376. [Google Scholar] [CrossRef]
Probe No. and Original Name | Recognition Moiety | λem/λex (nm) | Km | Response Rate (min) | LOD (nM) | Application | Ref. |
---|---|---|---|---|---|---|---|
(1) TRFS-green | 1,2-dithiolane | 538/438 | Other 1 | ~240 | — | Live cells | [78] |
(2) TRFS-red | 1,2-dithiolane | 660/615 | Other 2 | ~120 | — | Live cells | [101] |
(3) TP-TRFS | 1,2-dithiolane | 490/370 | — | ~180 | — | Live cells and animals | [102] |
(4) Mito-TRFS | 1,2-dithiolane | 540/438 | — | ~60 | — | Live cells | [110] |
(5) DSMP | 1,2-dithiolane | 510/340 | 12.5 μM | ~12 | — | Live cells and animals | [112] |
(6) Fast-TRFS | 1,2-dithiolane | 460/345 | — | ~5 | — | Live cells | [53] |
(8) RX1 | 1,2-thiaselenane | 520/355 | — | ~180 | — | Live cells | [79] |
(9) 1a | Linear diselenide | 580/531 | 15.89 μM | ~30 | — | Live cells | [114] |
(12) TR-green | α,β-unsaturated ketone | 500/440 | — | ~30 | — | Live cells | [141] |
(13) TPP2a | α,β-unsaturated ketone | 500/440 | — | ~30 | — | Live cells | [116] |
(14) Biotin-CD-Naph | Linear disulfide | 450/360 | 7 μg | ~80 | 72 | Live cells | [146] |
(15) fCDs-Cu2+ | Linear disulfide | 446/340 | 5.5 μg | ~100 | 20 | Live cells | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Fan, C.; Zhao, J.; Wang, L.; Duan, D.; Shen, T.; Li, X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. Biosensors 2023, 13, 811. https://doi.org/10.3390/bios13080811
Song Z, Fan C, Zhao J, Wang L, Duan D, Shen T, Li X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. Biosensors. 2023; 13(8):811. https://doi.org/10.3390/bios13080811
Chicago/Turabian StyleSong, Zilong, Chengwu Fan, Jintao Zhao, Lei Wang, Dongzhu Duan, Tong Shen, and Xinming Li. 2023. "Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives" Biosensors 13, no. 8: 811. https://doi.org/10.3390/bios13080811
APA StyleSong, Z., Fan, C., Zhao, J., Wang, L., Duan, D., Shen, T., & Li, X. (2023). Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. Biosensors, 13(8), 811. https://doi.org/10.3390/bios13080811