Recent Developments in Paper-Based Sensors with Instrument-Free Signal Readout Technologies (2020–2023)
Abstract
:1. Introduction
2. Instrument-Free Signal Readout Technologies of Paper-Based Sensors
2.1. Distance-Based Signal Readout Technology
2.2. Counting-Based Signal Readout Technology
2.3. Text-Based Signal Readout Technology
2.4. Other Transduction Technologies
3. Application of Paper-Based Sensors with an Instrument-Free Signal Readout
3.1. Biomedical Analysis
3.2. Environmental Analysis
3.3. Food Analysis
3.4. Other Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Edit. 2007, 46, 1318–1320. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, H.; Hirth, E.; Luo, M.; Timilsina, S.S.; Dou, M.; Dominguez, D.C.; Li, X.J. A microfluidic fully paper-based analytical device integrated with loop-mediated isothermal amplification and nano-biosensors for rapid, sensitive, and specific quantitative detection of infectious diseases. Lab Chip 2022, 22, 4693–4704. [Google Scholar] [CrossRef] [PubMed]
- Larpant, N.; Niamsi, W.; Noiphung, J.; Chanakiat, W.; Sakuldamrongpanich, T.; Kittichai, V.; Tongloy, T.; Tongloy, S.; Boonsang, S.; Laiwattanapaisal, W. Simultaneous phenotyping of five Rh red blood cell antigens on a paper-based analytical device combined with deep learning for rapid and accurate interpretation. Anal. Chim. Acta 2022, 1207, 339807. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, A.; Mancini, M.; Gioia, V.; Cinti, S. Office paper-based electrochemical strips for organophosphorus pesticide monitoring in agricultural soil. Environ. Sci. Technol. 2021, 55, 8859–8865. [Google Scholar] [CrossRef]
- Sharifi, H.; Tashkhourian, J.; Hemmateenejad, B. A 3D origami paper-based analytical device combined with PVC membrane for colorimetric assay of heavy metal ions: Application to determination of Cu(II) in water samples. Anal. Chim. Acta 2020, 1126, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Fahimi-Kashani, N.; Hormozi-Nezhad, M.R. A smart-phone based ratiometric nanoprobe for label-free detection of methyl parathion. Sens. Actuator B Chem. 2020, 322, 128580. [Google Scholar] [CrossRef]
- Dias, L.G.A.; Duarte, L.C.; Pinheiro, K.M.P.; Moreira, N.S.; Coltro, W.K.T. Distance-based paper microfluidics as environmentally friendly platforms for monitoring acid-base titrations. Talanta Open 2023, 7, 100216. [Google Scholar] [CrossRef]
- He, T.; Li, J.W.; Liu, L.S.; Ge, S.G.; Yan, M.; Liu, H.Y.; Yu, J.H. Origami-based “Book” shaped three-dimensional electrochemical paper microdevice for sample-to-answer detection of pathogens. RSC Adv. 2020, 10, 25808–25816. [Google Scholar] [CrossRef]
- Zhu, Y.; Tong, X.; Wei, Q.; Cai, G.; Cao, Y.; Tong, C.; Shi, S.Y.; Wang, F. 3D origami paper-based ratiometric fluorescent microfluidic device for visual point-of-care detection of alkaline phosphatase and butyrylcholinesterase. Biosens. Bioelectron. 2022, 196, 113691. [Google Scholar] [CrossRef]
- Yahyai, I.A.; Al-Lawati, H.A.J.; Hassanzadeh, J. Carbon dots-modified paper-based chemiluminescence device for rapid determination of mercury (II) in cosmetics. Luminescence 2022, 37, 1087–1097. [Google Scholar] [CrossRef]
- Wang, F.F.; Liu, Y.Q.; Fu, C.P.; Li, N.; Du, M.; Zhang, L.; Ge, S.G.; Yu, J.H. Paper-based bipolar electrode electrochemiluminescence platform for detection of multiple miRNAs. Anal. Chem. 2021, 93, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.C.; Du, C.; Zong, L.J.; Guo, X.Y.; Han, Y.F.; Zhang, X.P.; Li, L.; Zhang, C.W.; Ju, Q.; Liu, J.H.; et al. 3D vertical-flow paper-based device for simultaneous detection of multiple cancer biomarkers by fluorescent immunoassay. Sens. Actuators B Chem. 2020, 306, 127239. [Google Scholar] [CrossRef]
- Khachornsakkul, K.; Chang, J.J.; Lin, P.H.; Lin, Y.H.; Dungchai, W.; Chen, C.H. Highly sensitive distance-based liquid crystalline visualization for paper-based analytical devices. Anal. Chim. Acta 2021, 1154, 338328. [Google Scholar] [CrossRef]
- Lee, K.W.; Yu, Y.C.; Chun, H.J.; Jang, Y.H.; Han, Y.D.; Yoon, H.C. Instrumentation-free semiquantitative immunoanalysis using a specially patterned lateral flow assay device. Biosensors 2020, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, E.R.; Davidson, C.; Chen, H.; Zacharko, M.; Dorton, J.E.; Kilper, G.K.; Graves, C.; Miklos, A.E.; Rhea, K.; Ma, J.; et al. Blind spot: A braille patterned novel multiplex lateral flow immunoassay sensor array for the detection of biothreat agents. ACS Omega 2021, 6, 22700–22708. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.X.; Li, X.Y. An instrument-free visual quantitative detection method based on clock reaction: The detection of thrombin as an example. Anal. Methods 2023, 15, 48–55. [Google Scholar] [CrossRef]
- Alsaeed, B.; Mansour, F.R. Distance-based paper microfluidics; principle, technical aspects and applications. Microchem. J. 2020, 155, 104664. [Google Scholar] [CrossRef]
- Khan, M.; Zhao, B.L.; Wu, W.L.; Zhao, M.; Bi, Y.H.; Hu, Q.Z. Distance-based microfluidic assays for instrument-free visual point-of-care testing. TRAC-Trend Anal. Chem. 2023, 162, 117029. [Google Scholar] [CrossRef]
- Li, Z.D.; You, M.L.; Bai, Y.M.; Gong, Y.; Xu, F. Equipment-free quantitative readout in paper-based point-of-care testing. Small Methods 2019, 4, 1900459. [Google Scholar] [CrossRef]
- Cate, D.M.; Dungchai, W.; Cunningham, J.C.; Volckens, J.; Henry, C.S. Simple, distance-based measurement for paper analytical devices. Lab Chip 2013, 13, 2397–2404. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Katoh, A.; Matsubara, R.; Kondo, H.; Otsuka, M.; Sawatsubashi, T.; Hiruta, Y.; Citterio, D. Semi-quantitative microfluidic paper-based analytical device for ionic silica detection. Anal. Sci. 2023, 39, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Phoonsawat, K.; Dungchai, W. Highly sensitive, selective and naked-eye detection of bromide and bromate using distance-based paper analytical device. Talanta 2021, 221, 121590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, F.Q. Instrument-free quantitative determination of urea based on paper-based sensor via urease-mediated chitosan viscosity change. Enzym. Microb. Technol. 2021, 148, 109830. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.Z.; Qian, Z.M.; Wang, S.P.; Yang, F.Q. Glucose oxidase-mediated sodium alginate gelation: Instrument-Free detection of glucose in fruit samples. Enzym. Microb. Technol. 2021, 148, 109805. [Google Scholar] [CrossRef]
- Shou, W.; Yang, S.T.; Wang, Y.L.; Qiu, B.; Lin, Z.Y.; Guo, L.H. Agarose hydrogel doped with gold nanobipyramids (AuNBPs@AG) as colorful height readout device for sensing hydrogen peroxide in complex sample matrix. Sens. Actuators B Chem. 2021, 344, 130059. [Google Scholar] [CrossRef]
- Lewis, G.G.; DiTucci, M.J.; Phillips, S.T. Quantifying analytes in paper-based microfluidic devices without using external electronic readers. Angew. Chem. Int. Edit. 2012, 51, 12707–12710. [Google Scholar] [CrossRef] [PubMed]
- Khachornsakkul, K.; Phuengkasem, D.; Palkuntod, K.; Sangkharoek, W.; Jamjumrus, O.; Dungchai, W. A simple counting-based measurement for paper analytical devices and their application. ACS Sens. 2022, 7, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.A.; Blondeel, E.J.M.; MacDonald, B.D. Counting-based microfluidic paper-based devices capable of analyzing submicroliter sample volumes. Biomicrofluidics 2020, 14, 014107. [Google Scholar] [CrossRef]
- Yamada, K.; Suzuki, K.; Citterio, D. Text-displaying colorimetric paper-based analytical device. ACS Sens. 2017, 2, 1247–1254. [Google Scholar] [CrossRef]
- Chauhan, A.; Toley, B.J. Barrier-free microfluidic paper analytical devices for multiplex colorimetric detection of analytes. Anal. Chem. 2021, 93, 8954–8961. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, K.; Kong, Q.K.; Zhang, L.; Ge, S.G.; Yu, J.H. A self-powered origami paper analytical device with a pop-up structure for dual-mode electrochemical sensing of ATP assisted by glucose oxidase-triggered reaction. Biosens. Bioelectron. 2020, 148, 111839. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.; Men, X.J.; Gao, G.W.; Tian, Y.; Wen, Y.Q.; Zhang, X.J. A distance-based capillary biosensor using wettability alteration. Lab Chip 2021, 21, 719–724. [Google Scholar] [CrossRef]
- Han, C.L.; Yuan, X.K.; Shen, Z.H.; Xiao, Y.X.; Wang, X.W.; Khan, M.; Liu, S.H.; Li, W.; Hu, Q.Z.; Wu, W.L. A paper-based lateral flow sensor for the detection of thrombin and its inhibitors. Anal. Chim. Acta 2022, 1205, 339756. [Google Scholar] [CrossRef]
- Modha, S.; Castro, C.; Tsutsui, H. Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors. Biosens. Bioelectron. 2021, 178, 113026. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.C.C.G.; Rodrigues, L.R.; Moreira, F.T.C.; Sales, M.G.F. Colorimetric paper-based sensors against cancer biomarkers. Sensors 2022, 22, 3221. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, L.; Zhang, H.; Shen, X.S.; Zhu, Y.G.; Chen, H.Y. Novel wax valves to improve distance-based analyte detection in paper microfluidics. Anal. Chem. 2019, 91, 5169–5175. [Google Scholar] [CrossRef]
- Noviana, E.; Ozer, T.; Carrell, C.S.; Link, J.S.; McMahon, C.; Jang, I.; Henry, C.S. Microfluidic paper-based analytical devices: From design to applications. Chem. Rev. 2021, 121, 11835–11885. [Google Scholar] [CrossRef]
- Musa, A.M.; Kiely, J.; Luxton, R.; Honeychurch, K.C. Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. TrAC Trends Anal. Chem. 2021, 139, 116254. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhang, L.; Huang, J.K.; Deng, Z.H.; Yuan, Y.L.; Zou, J.M.; Nie, J.F.; Zhang, Y. Enhanced functional DNA biosensor for distance-based read-by-eye quantification of various analytes based on starch-hydrolysis-adjusted wettability change in paper devices. RSC Adv. 2020, 10, 28121–28127. [Google Scholar] [CrossRef]
- Qian, C.G.; Li, J.S.; Pang, Z.; Xie, H.; Wan, C.; Li, S.J.; Wang, X.; Xiao, Y.J.; Feng, X.J.; Li, Y.W.; et al. Hand-powered centrifugal micropipette-tip with distance-based quantification for on-site testing of SARS-CoV-2 virus. Talanta 2023, 258, 124466. [Google Scholar] [CrossRef]
- Allameh, S.; Rabbani, M. A distance-based microfluidic paper-based biosensor for glucose measurements in tear range. Appl. Biochem. Biotechnol. 2022, 194, 2077–2092. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, M.; Man, Q.; Huang, L.; Wang, J.; Gao, M.; Zhang, X. Naked-eye readout distance quantitative lateral flow assay based on the permeability changes of enzyme-catalyzed hydrogelation. Anal. Chem. 2023, 95, 8011–8019. [Google Scholar] [CrossRef]
- Khachornsakkul, K.; Dungchai, W.; Pamme, N. Distance-based all-in-one immunodevice for point-of-care monitoring of cytokine interleukin-6. ACS Sens. 2022, 7, 2410–2419. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, R.; Kuwahara, K.; Wen, Y.C.; Yen, T.H.; Hiruta, Y.; Cheng, C.M.; Citterio, D. Paper-based device for naked eye urinary albumin/creatinine ratio evaluation. ACS Sens. 2020, 5, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Rypar, T.; Adam, V.; Vaculovicova, M.; Macka, M. Paperfluidic devices with a selective molecularly imprinted polymer surface for instrumentation-free distance-based detection of protein biomarkers. Sens. Actuators B Chem. 2021, 341, 129999. [Google Scholar] [CrossRef]
- Feng, L.X.; Tang, C.; Han, X.X.; Zhang, H.C.; Guo, F.N.; Yang, T.; Wang, J.H. Simultaneous and sensitive detection of multiple small biological molecules by microfluidic paper-based analytical device integrated with zinc oxide nanorods. Talanta 2021, 232, 122499. [Google Scholar] [CrossRef]
- Abdulsattar, J.O.; Hadi, H.; Richardson, S.; Iles, A.; Pamme, N. Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs). Anal. Chim. Acta 2020, 1136, 196–204. [Google Scholar] [CrossRef]
- Phoonsawat, K.; Khachornsakkul, K.; Ratnarathorn, N.; Henry, C.S.; Dungchai, W. Distance-based paper device for a naked-eye albumin-to-alkaline phosphatase ratio assay. ACS Sens. 2021, 6, 3047–3055. [Google Scholar] [CrossRef]
- Xu, C.X.; Zhou, G.X.; Cai, H.H.; Chen, Y.C.; Huang, L.; Cai, L.H.; Gong, J.Y.; Yan, Z.K. Modification of microfluidic paper-based devices with an oxidant layer for distance readout of reducing substances. ACS Omega 2022, 7, 20383–20389. [Google Scholar] [CrossRef]
- Huang, Z.R.; Zhou, S.Q.; Wang, X.Y.; Liang, T.; Liu, X.; Wang, P.; Wan, H. Enzyme-based color bar-style lateral flow strip for equipment-free and semi-quantitative determination of urinary oxalate. Sens. Actuators B Chem. 2023, 385, 133699. [Google Scholar] [CrossRef]
- Zhang, D.G.; Wu, C.; Luan, C.X.; Gao, P.; Wang, H.; Chi, J.J.; Kong, T.T. Distance-based quantification of miRNA-21 by the coffee-ring effect using paper devices. Microchim. Acta 2020, 187, 513. [Google Scholar] [CrossRef] [PubMed]
- Tai, W.J.; Yin, F.C.; Bi, Y.H.; Lin, J.M.; Zhang, Q.; Wei, Y.; Hu, Q.Z.; Yu, L. Paper-based sensors for visual detection of alkaline phosphatase and alpha-fetoprotein via the distance readout. Sens. Actuators B Chem. 2023, 384, 133666. [Google Scholar] [CrossRef]
- Prapaporn, S.; Arisara, S.; Wunpen, C.; Wijitar, D. Nanocellulose films to improve the performance of distance-based glucose detection in paper-based microfluidic sevices. Anal. Sci. 2020, 36, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Karamahito, P.; Sitanurak, J.; Nacapricha, D.; Wilairat, P.; Chaisiwamongkhol, K.; Phonchai, A. Paper device for distance-based visual quantification of sibutramine adulteration in slimming products. Microchem. J. 2021, 162, 105784. [Google Scholar] [CrossRef]
- Ping, J.T.; Wu, W.L.; Qi, L.B.; Liu, J.; Liu, J.P.; Zhao, B.L.; Wang, Q.B.; Yu, L.; Lin, J.M.; Hu, Q.Z. Hydrogel-assisted paper-based lateral flow sensor for the detection of trypsin in human serum. Biosens. Bioelectron. 2021, 192, 113548. [Google Scholar] [CrossRef]
- Cai, L.F.; Ouyang, Z.; Song, J.H.; Yang, L.Y. Indicator-free argentometric titration for distance-based detection of chloride using microfluidic paper-based analytical devices. ACS Omega 2020, 5, 18935–18940. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, J.; Sallach, J.B.; Hu, X.J.; Gao, Y.Z. Whole-cell paper strip biosensors to semi-quantify tetracycline antibiotics in environmental matrices. Biosens. Bioelectron. 2020, 168, 112528. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Wu, S.; Jiang, T.; Chen, T.H. A fully integrated, ready-to-use distance-based chemosensor for visual quantification of multiple heavy metal ions. Anal. Chem. 2022, 94, 15925–15929. [Google Scholar] [CrossRef]
- Wang, J.; Yang, T.; Li, Z.; Zhou, K.; Xiao, B.; Yu, P. Semi-quantitative analysis of nickel: Counting-based μPADs built via hand drawing and yellow oily double-sided adhesive tape. RSC Adv. 2022, 12, 30457–30465. [Google Scholar] [CrossRef]
- Nguyen, M.P.; Kelly, S.P.; Wydallis, J.B.; Henry, C.S. Read-by-eye quantification of aluminum (III) in distance-based microfluidic paper-based analytical devices. Anal. Chim. Acta 2020, 1100, 156–162. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, F.Q. A paper-based lateral flow strip assay based on enzyme-mediated pectin viscosity change for the determination of polygalacturonase activity. Microchem. J. 2023, 186, 108322. [Google Scholar] [CrossRef]
- Al-Jaf, S.H.; Omer, K.M. Accuracy improvement via novel ratiometry design in distance-based microfluidic paper based analytical device: Instrument-free point of care testing. RSC Adv. 2023, 13, 15704–15713. [Google Scholar] [CrossRef] [PubMed]
- Kaewchuay, N.; Jantra, J.; Khettalat, C.; Ketnok, S.; Peungpra, N.; Teepoo, S. On-site microfluidic paper-based titration device for rapid semi-quantitative vitamin C content in beverages. Microchem. J. 2021, 164, 106054. [Google Scholar] [CrossRef]
- Sousa, A.C.R.; Makara, C.N.; Brazaca, L.C.; Carrilho, E. A colorimetric microfluidic paper-based analytical device for sulfonamides in cow milk using enzymatic inhibition. Food Chem. 2021, 356, 129692. [Google Scholar] [CrossRef] [PubMed]
- Promchat, A.; Praneenararat, T.; Jiamvijitkul, P.; Senpradit, Y.; Sukwattanasinitt, M. Paper-based fluorescent sensors from quinoline ligands for distance-based quantification of Zn2+. Sens. Actuators B Chem. 2023, 396, 134522. [Google Scholar] [CrossRef]
- Liu, J.P.; Bi, Y.H.; Tai, W.J.; Wei, Y.; Zhang, Q.; Liu, A.N.; Hu, Q.Z.; Yu, L. The development of a paper-based distance sensor for the detection of Pb2+ assisted with the target-responsive DNA hydrogel. Talanta 2023, 257, 124344. [Google Scholar] [CrossRef]
- Ninwong, B.; Sangkaew, P.; Hapa, P.; Ratnarathorn, N.; Menger, R.F.; Henry, C.S.; Dungchai, W. Sensitive distance-based paper-based quantification of mercury ions using carbon nanodots and heating-based preconcentration. RSC Adv. 2020, 10, 9884–9893. [Google Scholar] [CrossRef]
- Phoonsawat, K.; Agir, I.; Dungchai, W.; Ozer, T.; Henry, C.S. A smartphone-assisted hybrid sensor for simultaneous potentiometric and distance-based detection of electrolytes. Anal. Chim. Acta 2022, 1226, 340245. [Google Scholar] [CrossRef]
- Katelakha, K.; Nopponpunth, V.; Boonlue, W.; Laiwattanapaisal, W. A simple distance paper-based analytical device for the screening of lead in food matrices. Biosensors 2021, 11, 90. [Google Scholar] [CrossRef]
- Man, Y.; Ban, M.J.; Jin, X.X.; Li, A.; Tao, J.; Pan, L.G. An integrated distance-based microfluidic aptasensor for visual quantitative detection of Salmonella with sample-in-answer-out capability. Sens. Actuators B Chem. 2023, 381, 133480. [Google Scholar] [CrossRef]
- Giménez-Gómez, P.; Hättestrand, I.; Sjöberg, S.; Dupraz, C.; Richardson, S.; Pamme, N. Distance-based paper analytical device for the determination of dissolved inorganic carbon concentration in freshwater. Sens. Actuators B Chem. 2023, 385, 133694. [Google Scholar] [CrossRef]
Analytes/Real Sample | Composition/Design Method | Signal Readout Technologies | Limit of Detection | Linear Range | Ref. |
---|---|---|---|---|---|
Adenosine ; Interferon-γ; Pb2+/Human serum; Water sample | A circular region a and b, a rectangular c | Distance-based technology | Adenosine: 1.6 µM; Interferon-γ: 0.3 nM; Pb2+: 0.5 nM | Adenosine: 1.7–62.5 µM; Interferon-γ: 0.5–32 nM; Pb2+: 0.75–50 nM | [39] |
SARS-CoV-2/Nasal swab | / | Distance-based technology | 1 ng/mL | 1–10 μg/mL | [40] |
Glucose/Tears | A sample zone, primary circular zone, detection zone, and circular absorption zone/A wax printed method | Distance-based technology | 0.1 mM | 0.1–1.2 mM | [41] |
Hemoglobin A1c/Human blood | The C line and T line, absorbent pad, and sample pad | Distance-based technology | - | 3.3–15.1% | [42] |
Interleukin-6 (IL-6)/Human saliva and urine | Circular sample zone, capture zone, and detection channel zone/A wax printed method | Distance-based technology | 0.05 pg/mL | 0.05–25.0 pg/mL | [43] |
Urinary albumin (Alb) and creatinine (Cre)/Human urine | Sample inlet area and detection area/A wax printed method | Distance-based technology and Text-based technology | - | Alb: 0–1000 mg/mL; Cre: 0–3000 mg/mL | [44] |
Chymotrypsinogen/Human urine | A sample application zone, a detection zone, and an absorbent zone/A wax printed method | Distance-based technology | 3.5 μM | 2.4–29.2 μM | [45] |
Glucose and uric acid/Serum and urine | Detection layer and the auxiliary layer/A wax printed method | Other transduction technology | Glucose: 3 μM; Uric acid: 4 μM | Glucose: 0.01–10 mM; Uric acid: 0.01–5 mM | [46] |
Doxycycline hyclate (DOX) and oxymetazoline hydrochloride (OXY)/Doxycycline® tablets and Oxymetazoline® Nasal drops | Reaction zones/A wax printed method | Other transduction technology | - | DOX: 0.5–5 mg/L; OXY: 1.0–40 mg/L | [47] |
Albumin (Alb) and Alkaline phosphatase (ALP)/Human serum | Sample inlet zone, pretreatment zone, detection zone/A wax printed method | Distance-based technology | Alb: 0.8 g/L; ALP: 5 U/L | Alb: 1–25 g/L; ALP: 5–50 U/L; 50–200 U/L | [48] |
Ascorbic acid and captopril/Vitamin C and captopril tablets | The circular zone and a straight channel/A wax printed method | Distance-based technology | Ascorbic acid: 8.4 × 10−4 M; Captopril: 1.1 × 10−3 M | Ascorbic acid: 0.001–0.012 M; Captopril: 0.001–0.01 M | [49] |
Oxalate/Urine sample | Sample loading zone, test zone and absorbent paper pad | Counting-based technology | 0.3 mM | 0.3–0.7 mM | [50] |
Analytes/Real Sample | Composition/Design Method | Signal Readout Technology | Limit of Detection | Linear Range | Ref. |
---|---|---|---|---|---|
Chloride/Tap water | A straight channel and a circular zone/A wax printed method | Distance-based technology | Cl−: 1.7 mg/L | Cl−: 5–200 mg/L | [56] |
Tetracycline/Water and soil extracts | / | Other transduction technology | Tetracycline in water: 5.23–17.1 μg/L; Tetracycline in soil extracts: 5.21–35.3 μg/kg | Tetracycline in water: 75–10,000 μg/L; Tetracycline in soil extracts: 75–7500 μg/L | [57] |
Cu2+, Pb2+, and Ag+/Tap water and Fresh water | Chamber 1, chamber 2, and trapping channel | Distance-based technology | Cu2+: 103.1 nM; Pb2+: 69.5 nM; Ag+: 793.6 nM | Cu2+: 0–100 nM; Pb2+: 0–100 nM; Ag+: 0–1000 nM | [58] |
Ni2+/Tap water and Mineral water | A sample introduction zone and four circular detection zones/A wax printed method | Counting-based technology | - | 0–8 mM | [59] |
Al3+/Gold King Mine Water Samples | Sample inlet, the channel, and detection zone/A wax printed method | Distance-based technology | 2.5 ppm; 0.9 ppm | 2–54 ppm; 2–24 ppm | [60] |
Polygalacturonase/Cucumber sample | / | Distance-based technology | 0.025 U/mL | 0.025–0.80 U/mL | [61] |
Ascorbic acid/Orange juice and Vitamin C tablets | A rectangular reservoir, two straight parallel channels, a hydrophobic space, and a 3D connector/A wax printed method | Distance-based technology | 16 µM | 0.05–1.2 mM | [62] |
Ascorbic acid/Beverages | Sample loading area, microfluidic channel, a detection zone/A screen printed technique | Other transduction technology | 2.5 mg/L | 2.5–1000 mg/L | [63] |
Sulfonamides/Cow milk | Four microchannels containing two spots connected by the sample application chamber/A wax printed method | Other transduction technology | Sulfamethazine: 2.80 μM; Sulfadimethoxine: 2.70 μM; Sulfathiazole: 2.50 μM | 2.5–40.0 μM | [64] |
Zn2+/Drinking water, dietary supplements, micronutrient fertilizer | Loading zone and detection zone/A wax printed method | Distance-based technology | 1.87 nM; 1.32 nM; 1.57 nM | 0–30.0 nM; 0–60.0 nM; 0–70.0 nM | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Hu, C.; Zhang, H.; Geng, S. Recent Developments in Paper-Based Sensors with Instrument-Free Signal Readout Technologies (2020–2023). Biosensors 2024, 14, 36. https://doi.org/10.3390/bios14010036
Yang D, Hu C, Zhang H, Geng S. Recent Developments in Paper-Based Sensors with Instrument-Free Signal Readout Technologies (2020–2023). Biosensors. 2024; 14(1):36. https://doi.org/10.3390/bios14010036
Chicago/Turabian StyleYang, Danni, Chengju Hu, Hao Zhang, and Shan Geng. 2024. "Recent Developments in Paper-Based Sensors with Instrument-Free Signal Readout Technologies (2020–2023)" Biosensors 14, no. 1: 36. https://doi.org/10.3390/bios14010036
APA StyleYang, D., Hu, C., Zhang, H., & Geng, S. (2024). Recent Developments in Paper-Based Sensors with Instrument-Free Signal Readout Technologies (2020–2023). Biosensors, 14(1), 36. https://doi.org/10.3390/bios14010036