Understanding DNA Epigenetics by Means of Raman/SERS Analysis for Cancer Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culturing
2.2. DNA Extraction
2.3. DNA Methylation Analysis
2.4. DNA Base Preparation
2.5. Colloidal Silver Nanoparticle Synthesis
2.6. Raman Spectroscopy Sample Preparation and Measurements
2.7. SERS Sample Preparation and Measurements
3. Results
3.1. DNA Methylation Assay
3.2. Raman Analysis
3.3. SERS Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Globocan Cancer Observatory. Available online: https://Gco.Iarc.Fr/ (accessed on 20 November 2023).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cottini, F.; Hideshima, T.; Suzuki, R.; Tai, Y.-T.; Bianchini, G.; Richardson, P.G.; Anderson, K.C.; Tonon, G. Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discov. 2015, 5, 972–987. [Google Scholar] [CrossRef] [PubMed]
- Botrugno, O.A.; Tonon, G. Genomic Instability and Replicative Stress in Multiple Myeloma: The Final Curtain? Cancers 2021, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019505. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, H.N.; Verma, M. Epigenetic Mechanisms in Cancer. Biomark. Med. 2009, 3, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Ors Kumoglu, G.; Sendemir, A.; Tanyolac, M.B.; Bilir, B.; Kucuk, O.; Missirlis, Y.F. Epigenetic Mechanisms in Cancer. Longhua Chin. Med. 2022, 5, 4. [Google Scholar] [CrossRef]
- Holliday, R.; Grigg, G.W. DNA Methylation and Mutation. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1993, 285, 61–67. [Google Scholar] [CrossRef]
- Das, P.M.; Singal, R. DNA Methylation and Cancer. J. Clin. Oncol. 2004, 22, 4632–4642. [Google Scholar] [CrossRef]
- Baylin, S.B. Aberrant Patterns of DNA Methylation, Chromatin Formation and Gene Expression in Cancer. Hum. Mol. Genet. 2001, 10, 687–692. [Google Scholar] [CrossRef]
- Feinberg, A.P.; Vogelstein, B. Hypomethylation Distinguishes Genes of Some Human Cancers from Their Normal Counterparts. Nature 1983, 301, 89–92. [Google Scholar] [CrossRef]
- Baylin, S.B.; Ohm, J.E. Epigenetic Gene Silencing in Cancer—A Mechanism for Early Oncogenic Pathway Addiction? Nat. Rev. Cancer 2006, 6, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Felsher, D.W.; Bishop, J.M. Transient Excess of MYC Activity Can Elicit Genomic Instability and Tumorigenesis. Proc. Natl. Acad. Sci. USA 1999, 96, 3940–3944. [Google Scholar] [CrossRef] [PubMed]
- Denko, N.C.; Giaccia, A.J.; Stringer, J.R.; Stambrook, P.J. The Human Ha-Ras Oncogene Induces Genomic Instability in Murine Fibroblasts within One Cell Cycle. Proc. Natl. Acad. Sci. USA 1994, 91, 5124–5128. [Google Scholar] [CrossRef]
- Jin, B.; Robertson, K.D. DNA Methyltransferases, DNA Damage Repair, and Cancer. In Epigenetic Alterations in Oncogenesis; Springer: New York, NY, USA, 2013; pp. 3–29. [Google Scholar]
- Saitoh, T.; Oda, T. DNA Damage Response in Multiple Myeloma: The Role of the Tumor Microenvironment. Cancers 2021, 13, 504. [Google Scholar] [CrossRef]
- Petrilla, C.; Galloway, J.; Kudalkar, R.; Ismael, A.; Cottini, F. Understanding DNA Damage Response and DNA Repair in Multiple Myeloma. Cancers 2023, 15, 4155. [Google Scholar] [CrossRef] [PubMed]
- Mereu, E.; Abbo, D.; Paradzik, T.; Cumerlato, M.; Bandini, C.; Labrador, M.; Maccagno, M.; Ronchetti, D.; Manicardi, V.; Neri, A.; et al. Euchromatic Histone Lysine Methyltransferase 2 Inhibition Enhances Carfilzomib Sensitivity and Overcomes Drug Resistance in Multiple Myeloma Cell Lines. Cancers 2023, 15, 2199. [Google Scholar] [CrossRef] [PubMed]
- Stiufiuc, R.; Iacovita, C.; Lucaciu, C.M.; Stiufiuc, G.; Dutu, A.G.; Braescu, C.; Leopold, N. SERS-Active Silver Colloids Prepared by Reduction of Silver Nitrate with Short-Chain Polyethylene Glycol. Nanoscale Res. Lett. 2013, 8, 47. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670. [Google Scholar] [CrossRef]
- Vo-Dinh, T. Surface-Enhanced Raman Spectroscopy Using Metallic Nanostructures. TrAC Trends Anal. Chem. 1998, 17, 557–582. [Google Scholar] [CrossRef]
- Borșa, R.-M.; Toma, V.; Onaciu, A.; Moldovan, C.-S.; Mărginean, R.; Cenariu, D.; Știufiuc, G.-F.; Dinu, C.-M.; Bran, S.; Opriș, H.-O.; et al. Developing New Diagnostic Tools Based on SERS Analysis of Filtered Salivary Samples for Oral Cancer Detection. Int. J. Mol. Sci. 2023, 24, 12125. [Google Scholar] [CrossRef] [PubMed]
- Faur, C.I.; Dinu, C.; Toma, V.; Jurj, A.; Mărginean, R.; Onaciu, A.; Roman, R.C.; Culic, C.; Chirilă, M.; Rotar, H.; et al. A New Detection Method of Oral and Oropharyngeal Squamous Cell Carcinoma Based on Multivariate Analysis of Surface Enhanced Raman Spectra of Salivary Exosomes. J. Pers. Med. 2023, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, V.C.; Munteanu, R.A.; Gulei, D.; Mărginean, R.; Schițcu, V.H.; Onaciu, A.; Toma, V.; Știufiuc, G.F.; Coman, I.; Știufiuc, R.I. New Insights into the Multivariate Analysis of SER Spectra Collected on Blood Samples for Prostate Cancer Detection: Towards a Better Understanding of the Role Played by Different Biomolecules on Cancer Screening: A Preliminary Study. Cancers 2022, 14, 3227. [Google Scholar] [CrossRef] [PubMed]
- Leopold, N.; Lendl, B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727. [Google Scholar] [CrossRef]
- Moisoiu, V.; Socaciu, A.; Stefancu, A.; Iancu, S.; Boros, I.; Alecsa, C.; Rachieriu, C.; Chiorean, A.; Eniu, D.; Leopold, N.; et al. Breast Cancer Diagnosis by Surface-Enhanced Raman Scattering (SERS) of Urine. Appl. Sci. 2019, 9, 806. [Google Scholar] [CrossRef]
- Știufiuc, G.F.; Toma, V.; Buse, M.; Mărginean, R.; Morar-Bolba, G.; Culic, B.; Tetean, R.; Leopold, N.; Pavel, I.; Lucaciu, C.M.; et al. Solid Plasmonic Substrates for Breast Cancer Detection by Means of SERS Analysis of Blood Plasma. Nanomaterials 2020, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Safar, W.; Azziz, A.; Edely, M.; Lamy de la Chapelle, M. Conventional Raman, SERS and TERS Studies of DNA Compounds. Chemosensors 2023, 11, 399. [Google Scholar] [CrossRef]
- De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference Database of Raman Spectra of Biological Molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Aroca, R.; Bujalski, R. Surface Enhanced Vibrational Spectra of Thymine. Vib. Spectrosc. 1999, 19, 11–21. [Google Scholar] [CrossRef]
- Otto, C.; van den Tweel, T.J.J.; de Mul, F.F.M.; Greve, J. Surface-enhanced Raman Spectroscopy of DNA Bases. J. Raman Spectrosc. 1986, 17, 289–298. [Google Scholar] [CrossRef]
- Prescott, B.; Steinmetz, W.; Thomas, G.J. Characterization of DNA Structures by Laser Raman Spectroscopy. Biopolymers 1984, 23, 235–256. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rico, E.; Alvarez-Puebla, R.A.; Guerrini, L. Direct Surface-Enhanced Raman Scattering (SERS) Spectroscopy of Nucleic Acids: From Fundamental Studies to Real-Life Applications. Chem. Soc. Rev. 2018, 47, 4909–4923. [Google Scholar] [CrossRef] [PubMed]
- Barhoumi, A.; Zhang, D.; Tam, F.; Halas, N.J. Surface-Enhanced Raman Spectroscopy of DNA. J. Am. Chem. Soc. 2008, 130, 5523–5529. [Google Scholar] [CrossRef] [PubMed]
- Moisoiu, V.; Stefancu, A.; Iancu, S.D.; Moisoiu, T.; Loga, L.; Dican, L.; Alecsa, C.D.; Boros, I.; Jurj, A.; Dima, D.; et al. SERS Assessment of the Cancer-Specific Methylation Pattern of Genomic DNA: Towards the Detection of Acute Myeloid Leukemia in Patients Undergoing Hematopoietic Stem Cell Transplantation. Anal. Bioanal. Chem. 2019, 411, 7907–7913. [Google Scholar] [CrossRef] [PubMed]
- Kulis, M.; Merkel, A.; Heath, S.; Queirós, A.C.; Schuyler, R.P.; Castellano, G.; Beekman, R.; Raineri, E.; Esteve, A.; Clot, G.; et al. Whole-Genome Fingerprint of the DNA Methylome during Human B Cell Differentiation. Nat. Genet. 2015, 47, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.A.; Wardell, C.P.; Chiecchio, L.; Smith, E.M.; Boyd, K.D.; Neri, A.; Davies, F.E.; Ross, F.M.; Morgan, G.J. Aberrant Global Methylation Patterns Affect the Molecular Pathogenesis and Prognosis of Multiple Myeloma. Blood 2011, 117, 553–562. [Google Scholar] [CrossRef]
- Pyrak, E.; Krajczewski, J.; Kowalik, A.; Kudelski, A.; Jaworska, A. Surface Enhanced Raman Spectroscopy for DNA Biosensors—How Far Are We? Molecules 2019, 24, 4423. [Google Scholar] [CrossRef]
- Chen, C.; Liu, W.; Tian, S.; Hong, T. Novel Surface-Enhanced Raman Spectroscopy Techniques for DNA, Protein and Drug Detection. Sensors 2019, 19, 1712. [Google Scholar] [CrossRef]
- Onaciu, A.; Toma, V.; Moldovan, C.; Țigu, A.B.; Cenariu, D.; Culic, C.; Borșa, R.M.; David, L.; Știufiuc, G.F.; Tetean, R.; et al. Nanoscale Investigation of DNA Demethylation in Leukemia Cells by Means of Ultrasensitive Vibrational Spectroscopy. Sensors 2022, 23, 346. [Google Scholar] [CrossRef]
- Sheaffer, K.L.; Elliott, E.N.; Kaestner, K.H. DNA Hypomethylation Contributes to Genomic Instability and Intestinal Cancer Initiation. Cancer Prev. Res. 2016, 9, 534–546. [Google Scholar] [CrossRef]
- Zhou, D.; Robertson, K.D. Role of DNA Methylation in Genome Stability. In Genome Stability; Elsevier: Amsterdam, The Netherlands, 2016; pp. 409–424. [Google Scholar]
- Madakashira, B.P.; Sadler, K.C. DNA Methylation, Nuclear Organization, and Cancer. Front. Genet. 2017, 8, 76. [Google Scholar] [CrossRef] [PubMed]
Cell Line | 5 mC (%) (5 mC/Total DNA) |
---|---|
MM1S | 0.268 |
U266 | 0.160 |
LX2 | 0.759 |
CCD1137Sk | 0.701 |
Raman Wavenumber (cm−1) | SERS Wavenumber (cm−1) | Assignments | References |
---|---|---|---|
406 | C | [30] | |
420 | 414 | T | [30,31,32] |
482 | T | [30] | |
502 | T, G | [32,33] | |
535 | A | [30,32,33] | |
582 | T, G | [32] | |
598 | C | [30,32,33] | |
620–627 | C, T, A | [30,32,33] | |
632 | A, C | [33] | |
642–645 | G | [30] | |
670 | G, C | [32,33,34,35] | |
683–685 | G, C | [32,33,34,35] | |
697 | C, deoxyribose phosphate backbone | [32,33] | |
727 | 730–733 | A | [30,32,33,34,35] |
762 | 755–759 | T | [30] |
786 | 788 | T, C | [31,33,35] |
810 | T, G | [30,32] | |
863 | 854–862 | T, G | [30,31,32] |
887 | 888–892 | Deoxyribose phosphate backbone | [33] |
916 | 922 | Deoxyribose phosphate backbone | [33] |
973 | C, deoxyribose phosphate backbone | [30,32,33] | |
991 | C, deoxyribose phosphate backbone | [30,33] | |
1009 | 1010 | T, deoxyribose phosphate backbone, 5-mC | [31,33,36] |
1029–1032 | A, G, deoxyribose phosphate backbone | [32,33] | |
1046 | T, G | [30,31] | |
1094 | 1082–1089 | Deoxyribose phosphate backbone | [33,35] |
1129 | A | [30,32] | |
1182 | T, C | [32,33] | |
1249 | 1240–1247 | A, T | [30,33] |
1318 | 1323–1325 | G | [33] |
1333 | 1330 | A | [30,32,33,35] |
1374 | 1369–1373 | A, T, G | [30,31,33] |
1420 | T, C, G | [30,31,32,33] | |
1460–1465 | A, T, C, G, deoxyribose phosphate backbone | [30,33] | |
1484 | A, T, C, G | [32,33,35] | |
1530 | C | [30,32,33] | |
1552 | G | [30] | |
1575 | 1577 | A, G | [32,33,34,35] |
1601 | 1604 | C, G | [30,32,33] |
1627 | T | [33] | |
1648 | T, C | [30,33,34] | |
1670 | T, G | [30,31,32,33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, L.; Onaciu, A.; Toma, V.; Borșa, R.-M.; Moldovan, C.; Țigu, A.-B.; Cenariu, D.; Șimon, I.; Știufiuc, G.-F.; Carasevici, E.; et al. Understanding DNA Epigenetics by Means of Raman/SERS Analysis for Cancer Detection. Biosensors 2024, 14, 41. https://doi.org/10.3390/bios14010041
David L, Onaciu A, Toma V, Borșa R-M, Moldovan C, Țigu A-B, Cenariu D, Șimon I, Știufiuc G-F, Carasevici E, et al. Understanding DNA Epigenetics by Means of Raman/SERS Analysis for Cancer Detection. Biosensors. 2024; 14(1):41. https://doi.org/10.3390/bios14010041
Chicago/Turabian StyleDavid, Luca, Anca Onaciu, Valentin Toma, Rareș-Mario Borșa, Cristian Moldovan, Adrian-Bogdan Țigu, Diana Cenariu, Ioan Șimon, Gabriela-Fabiola Știufiuc, Eugen Carasevici, and et al. 2024. "Understanding DNA Epigenetics by Means of Raman/SERS Analysis for Cancer Detection" Biosensors 14, no. 1: 41. https://doi.org/10.3390/bios14010041
APA StyleDavid, L., Onaciu, A., Toma, V., Borșa, R. -M., Moldovan, C., Țigu, A. -B., Cenariu, D., Șimon, I., Știufiuc, G. -F., Carasevici, E., Drăgoi, B., Tomuleasa, C., & Știufiuc, R. -I. (2024). Understanding DNA Epigenetics by Means of Raman/SERS Analysis for Cancer Detection. Biosensors, 14(1), 41. https://doi.org/10.3390/bios14010041