Aggregation-Resistant, Turn-On-Off Fluorometric Sensing of Glutathione and Nickel (II) Using Vancomycin-Conjugated Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Colloidal Vancomycin-Conjugated Gold Nanoparticles and Physical Characterization
2.2. Quantum Yield Determination of PEI-AuNP@Van
2.3. Experimental Setup for Fluorometric Sensing of Ni2+ and GSH
3. Results and Discussion
3.1. Synthesis and Characterization of Vancomycin-Conjugated Gold Nanoparticles
3.2. Effect of Salts, pH, and Time over Synthesized PEI-AuNP@Van
3.3. Effect of GSH and Ni2+ on the SPR and Physical Properties of PEI-AuNP@Van
3.4. PEI-AuNP@Van mediated Fluorometric Sensing of GSH and Ni2+
3.5. Time-Resolved Fluorescence Lifetime Analysis
3.6. Selectivity of PEI-AuNP@Van for Ni2+ Ions and GSH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GSH | Glutathione |
PEI-AuNPs | Un-conjugated polyethyleneimine stabilized gold nanoparticles |
PEI-AuNP@Van | Vancomycin-conjugated polyethyleneimine-stabilized gold nanoparticles |
DLS | Dynamic light scattering |
References
- Georgieva, S.; Todorov, P.; Bezfamilnyi, A.; Georgiev, A. Coordination behavior of 3-amino-5, 5′-dimethylhydantoin towards Ni (II) and Zn (II) ions: Synthesis, spectral characterization and DFT calculations. J. Mol. Struct. 2018, 1166, 377–387. [Google Scholar] [CrossRef]
- Judith, T.Z.; Peter, T.; Thomas, T. Immunotoxicology of Environment Occupational Metals; CRC Press: New York, NY, USA, 1998. [Google Scholar]
- Fay, M. Toxicological Profile for Nickel; Agency for Toxic Substances and Disease Registry: Washington, DC, USA, 2005. [Google Scholar]
- Kollmeier, H.; Seemann, J.W.; Müller, K.-M.; Rothe, G.; Wittig, P.; Schejbal, V.B. Increased chromium and nickel content in lung tissue and bronchial carcinoma. Am. J. Ind. Med. 1987, 11, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Wood, Z.A.; Schröder, E.; Harris, J.R.; Poole, L.B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003, 28, 32–40. [Google Scholar] [CrossRef]
- Włodek, L. Beneficial and harmful effects of thiols. Pol. J. Pharmacol. 2002, 54, 215–223. [Google Scholar]
- Hong, R.; Han, G.; Fernández, J.M.; Kim, B.J.; Forbes, N.S.; Rotello, V.M. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 2006, 128, 1078–1079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Qu, F.; Luo, H.Q.; Li, N.B. Sensitive and selective detection of bio thiols based on target-induced agglomeration of silver nanoclusters. Biosens. Bioelectron. 2013, 42, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Gazda, D.B.; Fritz, J.S.; Porter, M.D. Determination of nickel (II) as the nickel dimethylglyoxime complex using colorimetric solid phase extraction. Anal. Chim. Acta 2004, 508, 53–59. [Google Scholar] [CrossRef]
- Zheng, C.; Sturgeon, R.E.; Hou, X. UV photochemical vapor generation and in situ preconcentration for determination of ultra-trace nickel by flow injection graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2009, 24, 1452–1458. [Google Scholar] [CrossRef]
- Cui, C.; He, M.; Hu, B. Membrane solid phase micro extraction with alumina hollow fiber on line coupled with ICP-OES for the determination of trace copper, manganese and nickel in environmental water samples. J. Hazard. Mater. 2011, 187, 379–385. [Google Scholar] [CrossRef]
- de Quadros, D.P.; Borges, D.L. Direct analysis of alcoholic beverages for the determination of cobalt, nickel and tellurium by inductively coupled plasma mass spectrometry following photochemical vapor generation. Microchem. J. 2014, 116, 244–248. [Google Scholar] [CrossRef]
- Shiu, H.-Y.; Wong, M.-K.; Che, C.-M. “Turn-on” FRET-based luminescent iridium (III) probes for the detection of cysteine and homocysteine. Chem. Commun. 2011, 47, 4367–4369. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Huang, X.; Li, Y.; Zhang, H.; Zhong, X. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Analyst 2012, 137, 924–931. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Yan, X.-P. Photo activated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting bio thiols in biological fluids. Anal. Chem. 2009, 81, 5001–5007. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zu, Y.; Yam, V.W.-W. Specific post column detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles. Anal. Chem. 2007, 79, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, J.; Lv, X.; Liu, Y.; Zhao, Y.; Guo, W. A naphthalimide-based glyoxal hydrazone for selective fluorescence turn-on sensing of Cys and Hcy. Org. Lett. 2012, 14, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Shrivas, K.; Nirmalkar, N.; Ghosale, A.; Thakur, S.S. Application of silver nanoparticles for a highly selective colorimetric assay of endrin in water and food samples based on stereoselective endo-recognition. RSC Adv. 2016, 6, 29855–29862. [Google Scholar] [CrossRef]
- Shrivas, K.; Sahu, B.; Deb, M.K.; Thakur, S.S.; Sahu, S.; Kurrey, R.; Kant, T.; Patle, T.K.; Jangde, R. Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchem. J. 2019, 150, 104156. [Google Scholar] [CrossRef]
- Wang, W.; Wu, C.; Yang, C.; Li, G.; Han, Q.-B.; Li, S.; Lee, S.M.-Y.; Leung, C.-H.; Ma, D.-L. A dual-functional luminescent probe for imaging H2S in living zebrafish and discrimination hypoxic cells from normoxic cells probe for imaging H2S in living zebrafish and discrimination hypoxic cells from normoxic cells. Sens. Actuators B Chem. 2018, 255, 1953–1959. [Google Scholar] [CrossRef]
- Wu, C.; Wu, K.J.; Kang, T.S.; Wang, H.M.D.; Leung, C.H.; Liu, J.B.; Ma, D.L. Iridium-based probe for luminescent nitric oxide monitoring in live cells. Sci. Rep. 2018, 8, 12467. [Google Scholar] [CrossRef]
- Furletov, A.A.; Apyari, V.V.; Garshev, A.V.; Dmitrienko, S.G.; Zolotov, Y.A. Triangular silver Nano plates as a spectrophotometric reagent for the determination of mercury (II). J. Anal. Chem. 2017, 72, 1203–1207. [Google Scholar] [CrossRef]
- Shi, Y.; Pan, Y.; Zhang, H.; Zhang, Z.; Li, M.J.; Yi, C.; Yang, M. A dual-mode Nano sensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens. Bioelectron. 2014, 56, 39–45. [Google Scholar] [CrossRef]
- Deng, R.; Xie, X.; Vendrell, M.; Chang, Y.T.; Liu, X. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 2011, 133, 20168–20171. [Google Scholar] [CrossRef] [PubMed]
- Gui, R.; An, X.; Su, H.; Shen, W.; Zhu, L.; Ma, X.; Chen, Z.; Wang, X. Rhodamine 6G conjugated-quantum dots used for highly sensitive and selective ratiometric fluorescence sensor of glutathione. Talanta 2012, 94, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.C.; Pandey, G. Novel synthesis of gold nanoparticles mediated by polyethyleneimine and organic reducing agents for biomedical applications. Adv. Sci. Eng. Med. 2016, 8, 43–48. [Google Scholar] [CrossRef]
- Pandey, P.C.; Pandey, G.; Narayan, R.J. Controlled synthesis of polyethylenimine coated gold nanoparticles: Application in glutathione sensing and nucleotide delivery: Controlled Synthesis of Gold Nanoparticles. J. Biomed. Mater. Res. Part B 2017, 105, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.C.; Pandey, G.; Narayan, R.J. Polyethyleneimine-mediated synthetic insertion of gold nanoparticles into mesoporous silica nanoparticles for drug loading and biocatalysis. Biointerphases 2017, 12, 011005. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Gupta, M.K.; Pandey, G.; Narayan, R.J.; Pandey, P.C. Molecular weight of Polyethyleneimine-dependent transfusion and selective antimicrobial activity of functional silver nanoparticles. J. Mater. Res. 2020, 35, 2405–2415. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Gupta, M.K.; Narayan, R.J.; Pandey, P.C. A whole cell fluorescence quenching-based approach for the investigation of polyethyleneimine functionalized silver nanoparticles interaction with Candida albicans. Front. Microbiol. 2023, 14, 1131122. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Yadav, H.P.; Gupta, M.K.; Narayan, R.; Pandey, P.C. Synthesis of vancomycin functionalized fluorescent gold nanoparticles and selective sensing of mercury (II). Front. Chem. 2023, 11, 1238631. [Google Scholar] [CrossRef]
- Mitra, M.D.; Pandey, P.C. Functional trialkoxysilane mediated controlled synthesis of fluorescent gold nanoparticles and fluorometric sensing of dopamine. Opt. Mater. 2022, 132, 112810. [Google Scholar] [CrossRef]
- Satilmis, B.; Budd, P.M. Base-catalysed hydrolysis of PIM-1: Amide versus carboxylate formation. RSC Adv. 2014, 4, 52189–52198. [Google Scholar] [CrossRef]
- Burns, C.; Spendel, W.U.; Puckett, S.; Pacey, G.E. Solution ionic strength effect on gold nanoparticle solution color transition. Talanta 2006, 69, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Haiss, W.; Thanh, N.T.; Aveyard, J.; Fernig, D.G. Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef]
- Moaseri, E.; Bollinger, J.A.; Changalvaie, B.; Johnson, L.; Schroer, J.; Johnston, K.P.; Truskett, T.M. Reversible self-assembly of glutathione-coated gold nanoparticle clusters via pH-tunable interactions. Langmuir 2017, 33, 12244–12253. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Li, Z.; Liu, G.; Wang, R.; Pu, S. A sensitive fluorescence “turn on” nanosensor for glutathione detection based on Ce-MOF and gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120362. [Google Scholar] [CrossRef]
- Li, L.; Shi, L.; Jia, J.; Eltayeb, O.; Lu, W.; Tang, Y.; Dong, C.; Shuang, S. Dual photoluminescence emission carbon dots for ratiometric fluorescent GSH sensing and cancer cell recognition. ACS Appl. Mater. Interfaces 2020, 12, 18250–18257. [Google Scholar] [CrossRef]
- Mi, Y.; Lei, X.; Han, H.; Liang, J.; Liu, L. A sensitive label-free FRET probe for glutathione based on CdSe/ZnS quantum dots and MnO2 nanosheets. Anal. Methods 2018, 10, 4170–4177. [Google Scholar] [CrossRef]
- Zhang, Z.; Pei, K.; Yan, Z.; Chen, J. Facile synthesis of AgNPs@ SNCDs nanocomposites as a fluorescent ‘turn on ‘sensor for detection of glutathione. Luminescence 2021, 36, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, S.; Xia, M.; Wang, B.; Huang, Y.; Zhang, D.; Zhang, X.; Wang, G. Intracellular imaging of glutathione with MnO2 Nanosheet@ Ru(bpy) 32+–UiO-66 nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 31693–31699. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Chai, R.; Xu, Y.; Li, H.; Liu, B. Luminescent lanthanide-based organic/inorganic hybrid materials for discrimination of glutathione in solution and within hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 13554–13563. [Google Scholar] [CrossRef]
- Li, J.-F.; Huang, P.-C.; Wu, F.-Y. Highly selective and sensitive detection of glutathione based on anti-aggregation of gold nanoparticles via pH regulation. Sens. Actuators B Chem. 2017, 240, 553–559. [Google Scholar] [CrossRef]
- Xu, L.; Du, X.; Liu, T.; Sun, D. In situ and dynamic SERS monitoring of glutathione levels during cellular ferroptosis metabolism. Anal. Bioanal. Chem. 2023, 415, 6145–6153. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Golder, A.K.; Uppaluri, R.V.S. Monodispersed AuNPs Synthesized in a Bio-based Route for Ultra Selective Colorimetric Determination of Ni (II) Ions. Chem. Phys. Impact 2023, 7, 100388. [Google Scholar] [CrossRef]
- Parnsubsakul, A.; Oaew, S.; Surareungchai, W. Zwitterionic peptide-capped gold nanoparticles for colorimetric detection of Ni2+. Nanoscale 2018, 10, 5466–5473. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Li, J.; Yang, W. Aggregation of glutathione-functionalized Au nanoparticles induced by Ni2+ ions. J. Nanoparticle Res. 2012, 14, 929. [Google Scholar] [CrossRef]
Sample | Integrated Intensity at 320 nm | Absorbance at 320 nm | Quantum Yield (%) |
---|---|---|---|
Quinine sulfate (reference) | 65,840 | 0.04 | 54 |
PEI-AuNP@Van (sample) | 23,465 | 0.05 | 15.40 |
Nanoprobe | Method | Linear Range | Limit of Detection | References |
---|---|---|---|---|
Ce-MOF/AuNPs | Fluorescence (GSH) | 0.2–32.5 μM | 58 nM | [37] |
QDs@SiO2@MnO2 | FRET-based GSH sensing | 0.16–0.48 mM | 610 nM | [39] |
AgNPs@SNCDs | Fluorescence (GSH) | 8.35–200.5 μM | 520 nM | [40] |
CDs | Fluorescence (GSH) | 1–150 μM | 260 nM | [38] |
MnO2 NS@Ru(bpy)3 2+-UiO-66 | Fluorescence (GSH) | 0–300 μM | 280 nM | [41] |
Eu(DPA)3@Lap-Tris/Cu2+ | Luminescent lanthanide-based GSH sensing | 0.5–30 μM | 162 nM | [42] |
MMI-AuNPs | Colorimetric (GSH) | 0.1–1.0 μM | 12.0 nM | [43] |
AuNPs@CV Nanosensors | SERS-based GSH sensing | 0 − 24 μM | 0.05 μM | [44] |
PEI-AuNP@Van | Fluorescence (GSH) | 0.05–0.8 μM | 205.9 nM | Present work |
Bio-AuNPs | Colorimetric (Ni2+) | 0 to 1 mg/L | 0.001 mg/L | [45] |
Malonate AuNPs | Colorimetric (Ni2+) | 10–500 ng mL−1 | 3 ng mL−1 | [18] |
Zwitterionic polypeptide capped gold nanoparticles (AuNPs-(EK)3 | Colorimetric (Ni2+) | 60–160 nM | 34 nM | [46] |
AuNPs-GSH | Colorimetric (Ni2+) | 10–80 µM | 10 µM | [47] |
PEI-AuNP@Van | Fluorescence (Ni2+) | 0.05–6.4 µM | 90.5 nM | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, A.K.; Gupta, M.K.; Yadav, H.P.; Narayan, R.J.; Pandey, P.C. Aggregation-Resistant, Turn-On-Off Fluorometric Sensing of Glutathione and Nickel (II) Using Vancomycin-Conjugated Gold Nanoparticles. Biosensors 2024, 14, 49. https://doi.org/10.3390/bios14010049
Tiwari AK, Gupta MK, Yadav HP, Narayan RJ, Pandey PC. Aggregation-Resistant, Turn-On-Off Fluorometric Sensing of Glutathione and Nickel (II) Using Vancomycin-Conjugated Gold Nanoparticles. Biosensors. 2024; 14(1):49. https://doi.org/10.3390/bios14010049
Chicago/Turabian StyleTiwari, Atul Kumar, Munesh Kumar Gupta, Hari Prakash Yadav, Roger J. Narayan, and Prem C. Pandey. 2024. "Aggregation-Resistant, Turn-On-Off Fluorometric Sensing of Glutathione and Nickel (II) Using Vancomycin-Conjugated Gold Nanoparticles" Biosensors 14, no. 1: 49. https://doi.org/10.3390/bios14010049
APA StyleTiwari, A. K., Gupta, M. K., Yadav, H. P., Narayan, R. J., & Pandey, P. C. (2024). Aggregation-Resistant, Turn-On-Off Fluorometric Sensing of Glutathione and Nickel (II) Using Vancomycin-Conjugated Gold Nanoparticles. Biosensors, 14(1), 49. https://doi.org/10.3390/bios14010049