Progression in Near-Infrared Fluorescence Imaging Technology for Lung Cancer Management
Abstract
:1. Introduction
2. Principle and Type of Fluorescent Probe
2.1. Action Principle of NIR Fluorescent Probe
2.2. Types of NIR Fluorescent Probes
3. Lung Cancer-Associated NIR Fluorescent Probes
3.1. Enzyme-Activatable Fluorescent Probes
3.2. Receptor-Binding Fluorescent Probes
3.3. Antigen-Based Probes
3.4. Probes Based on Cell Physical Properties
3.5. Other Fluorescent Probes Related to Lung Cancer
4. Clinical Application and Transformation
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adams, S.J.; Stone, E.; Baldwin, D.R.; Vliegenthart, R.; Lee, P.; Fintelmann, F.J. Lung cancer screening. Lancet 2023, 401, 390–408. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.L. Lung Cancer. Surg. Clin. North Am. 2022, 102, 335–344. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.K.; Singh, D.P.; Choudhary, J. Lung cancer identification: A review on detection and classification. Cancer Metastasis Rev. 2020, 39, 989–998. [Google Scholar] [CrossRef]
- Nooreldeen, R.; Bach, H. Current and Future Development in Lung Cancer Diagnosis. Int. J. Mol. Sci. 2021, 22, 8661. [Google Scholar] [CrossRef]
- Gheorghe, G.; Bungau, S.; Ilie, M.; Behl, T.; Vesa, C.M.; Brisc, C.; Bacalbasa, N.; Turi, V.; Costache, R.S.; Diaconu, C.C. Early Diagnosis of Pancreatic Cancer: The Key for Survival. Diagnostics 2020, 10, 869. [Google Scholar] [CrossRef]
- Sarmiento, S.; McColl, M.; Musavi, L.; Gani, F.; Canner, J.K.; Jacobs, L.; Fu, F.; Siotos, C.; Habibi, M. Male breast cancer: A closer look at patient and tumor characteristics and factors that affect survival using the National Cancer Database. Breast Cancer Res. Treat. 2020, 180, 471–479. [Google Scholar] [CrossRef]
- Henley, S.J.; Ward, E.M.; Scott, S.; Ma, J.; Anderson, R.N.; Firth, A.U.; Thomas, C.C.; Islami, F.; Weir, H.K.; Lewis, D.R.; et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer 2020, 126, 2225–2249. [Google Scholar] [CrossRef]
- Tummala, P.; Junaidi, O.; Agarwal, B. Imaging of pancreatic cancer: An overview. J. Gastrointest. Oncol. 2011, 2, 168–174. [Google Scholar]
- Ding, H.; Zhou, X.-X.; Wei, J.-S.; Li, X.-B.; Qin, B.-T.; Chen, X.-B.; Xiong, H.-M. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon 2020, 167, 322–344. [Google Scholar] [CrossRef]
- Mahalingam, S.M.; Kularatne, S.A.; Myers, C.H.; Gagare, P.; Norshi, M.; Liu, X.; Singhal, S.; Low, P.S. Evaluation of novel tumor-targeted near-infrared probe for fluorescence-guided surgery of cancer. J. Med. Chem. 2018, 61, 9637–9646. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.Q.; Lou, K.L.; Wang, P.Y.; Gao, Y.Y.; Zhang, Y.Q.; Chen, M.; Huang, W.H.; Zhang, G.J. Surgical Navigation for Malignancies Guided by Near-Infrared-II Fluorescence Imaging. Small Methods 2021, 5, 2001066. [Google Scholar] [CrossRef] [PubMed]
- Zhen, X.; Zhang, J.; Huang, J.; Xie, C.; Miao, Q.; Pu, K. Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy. Angew. Chem. Int. Ed. 2018, 57, 7804–7808. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Zhang, Y.; Guo, Z. Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coord. Chem. Rev. 2021, 427, 213556. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 2023, 1, 60–78. [Google Scholar] [CrossRef]
- Gao, R.W.; Teraphongphom, N.T.; van den Berg, N.S.; Martin, B.A.; Oberhelman, N.J.; Divi, V.; Kaplan, M.J.; Hong, S.S.; Lu, G.; Ertsey, R.; et al. Determination of Tumor Margins with Surgical Specimen Mapping Using Near-Infrared Fluorescence. Cancer Res. 2018, 78, 5144–5154. [Google Scholar] [CrossRef]
- Huang, J.; Pu, K. Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angew. Chem. Int. Ed. 2020, 59, 11717–11731. [Google Scholar] [CrossRef]
- Sarhadi, V.K.; Armengol, G. Molecular Biomarkers in Cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef]
- Pouliquen, D.; Boissard, A.; Coqueret, O.; Guette, C. Biomarkers of tumor invasiveness in proteomics (Review). Int. J. Oncol. 2020, 57, 409–432. [Google Scholar] [CrossRef]
- Jardim, D.L.; Goodman, A.; de Melo Gagliato, D.; Kurzrock, R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell 2021, 39, 154–173. [Google Scholar] [CrossRef] [PubMed]
- Savadjiev, P.; Chong, J.; Dohan, A.; Agnus, V.; Forghani, R.; Reinhold, C.; Gallix, B. Image-based biomarkers for solid tumor quantification. Eur. Radiol. 2019, 29, 5431–5440. [Google Scholar] [CrossRef]
- Harding, J.J.; Khalil, D.N.; Abou-Alfa, G.K. Biomarkers: What Role Do They Play (If Any) for Diagnosis, Prognosis and Tumor Response Prediction for Hepatocellular Carcinoma? Dig. Dis. Sci. 2019, 64, 918–927. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-R.; Wu, X.-L.; Sun, Y.-L. Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response. Signal Transduct. Target. Ther. 2022, 7, 331. [Google Scholar] [CrossRef] [PubMed]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef] [PubMed]
- Panchal, N.K.; Sabina, E.P. A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy. Life Sci. 2020, 255, 117866. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Wang, Y.; Zhou, Y.; Luo, Y.; Cui, Y.; Jiang, N.; Jiang, W.; Wang, H.; Xu, D.; et al. CTHRC1 induces non-small cell lung cancer (NSCLC) invasion through upregulating MMP-7/MMP-9. BMC Cancer 2018, 18, 400. [Google Scholar] [CrossRef]
- Han, L.; Sheng, B.; Zeng, Q.; Yao, W.; Jiang, Q. Correlation between MMP2 expression in lung cancer tissues and clinical parameters: A retrospective clinical analysis. BMC Pulm. Med. 2020, 20, 283. [Google Scholar] [CrossRef]
- Liu, J.-F.; Lee, C.-W.; Tsai, M.-H.; Tang, C.-H.; Chen, P.-C.; Lin, L.-W.; Lin, C.-Y.; Lu, C.-H.; Lin, Y.-F.; Yang, S.-H.; et al. Thrombospondin 2 promotes tumor metastasis by inducing matrix metalloproteinase-13 production in lung cancer cells. Biochem. Pharmacol. 2018, 155, 537–546. [Google Scholar] [CrossRef]
- Xia, F.; Niu, J.; Hong, Y.; Li, C.; Cao, W.; Wang, L.; Hou, W.; Liu, Y.; Cui, D. Matrix metallopeptidase 2 targeted delivery of gold nanostars decorated with IR-780 iodide for dual-modal imaging and enhanced photothermal/photodynamic therapy. Acta Biomater. 2019, 89, 289–299. [Google Scholar] [CrossRef]
- Voynow, J.A.; Shinbashi, M. Neutrophil Elastase and Chronic Lung Disease. Biomolecules 2021, 11, 1065. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.T.; Hahn, K.W.; Yoon, S.Y.; Sohn, K.-Y.; Kim, J.W. PLAG Exerts Anti-Metastatic Effects by Interfering with Neutrophil Elastase/PAR2/EGFR Signaling in A549 Lung Cancer Orthotopic Model. Cancers 2020, 12, 560. [Google Scholar] [CrossRef]
- Lerman, I.; Hammes, S.R. Neutrophil elastase in the tumor microenvironment. Steroids 2018, 133, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Lulla, A.R.; Akli, S.; Karakas, C.; Caruso, J.A.; Warma, L.D.; Fowlkes, N.W.; Rao, X.; Wang, J.; Hunt, K.K.; Watowich, S.S.; et al. Neutrophil Elastase Remodels Mammary Tumors to Facilitate Lung Metastasis. Mol. Cancer Ther. 2024, 23, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhou, Y.; Li, D.; Ma, T. Near-infrared fluorescent probe with large stokes shift for detecting Human Neutrophil elastase in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 252, 119533. [Google Scholar] [CrossRef]
- Kubo, H.; Murayama, Y.; Ogawa, S.; Matsumoto, T.; Yubakami, M.; Ohashi, T.; Kubota, T.; Okamoto, K.; Kamiya, M.; Urano, Y.; et al. β-Galactosidase is a target enzyme for detecting peritoneal metastasis of gastric cancer. Sci. Rep. 2021, 11, 10664. [Google Scholar] [CrossRef]
- Cen, P.; Cui, C.; Huang, J.; Chen, H.; Wu, F.; Niu, J.; Zhong, Y.; Jin, C.; Zhu, W.-H.; Zhang, H.; et al. Cellular senescence imaging and senolysis monitoring in cancer therapy based on a β-galactosidase-activated aggregation-induced emission luminogen. Acta Biomater. 2024, 179, 340–353. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, H.; Wang, Y.; Feng, L. A “turn-on” fluorescent probe for ultra-sensitive detection of β-galactosidase. Microchem. J. 2021, 166, 106205. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Zhu, D.; Zhu, T.; Zhang, Y.; Li, Y.; Luo, J.; Kong, L. A new near-infrared excitation/emission fluorescent probe for the detection of β-galactosidase in living cells and in vivo. Talanta 2022, 237, 122952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Q.; Wang, J.; Zhang, H.; Zhao, D.; Zhang, Z. Expression and clinical significance of aminopeptidase N/CD13 in non-small cell lung cancer. J. Cancer Res. Ther. 2015, 11, 223–228. [Google Scholar] [CrossRef]
- Barnieh, F.M.; Loadman, P.M.; Falconer, R.A. Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188641. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Ma, M.; Li, J.; Xu, L.; Gao, D.; Ma, P.; Song, D. Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chin. Chem. Lett. 2024, 21, 110147. [Google Scholar] [CrossRef]
- Hu, Q.; Zhu, W.; Du, J.; Long, S.; Sun, W.; Fan, J.; Peng, X. A near-infrared GPX4 fluorescent probe for non-small cell lung cancer imaging. Chem. Commun. 2023, 59, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Punganuru, S.R.; Madala, H.R.; Arutla, V.; Zhang, R.; Srivenugopal, K.S. Characterization of a highly specific NQO1-activated near-infrared fluorescent probe and its application for in vivo tumor imaging. Sci. Rep. 2019, 9, 8577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, K.; Jiang, S.; Zhao, F.; Chen, P.; Huang, P.; Lin, J. In Vivo Near-Infrared Fluorescence/Ratiometric Photoacoustic Duplex Imaging of Lung Cancer-Specific hNQO1. Anal. Chem. 2022, 94, 13770–13776. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, Q.; Feng, Y.; Li, J.; Gong, X.; Wang, S. NQO1 and viscosity tandemly responsive NIR fluorescent probe for tumor imaging and monitoring tumor apoptosis. Sens. Actuators B Chem. 2024, 418, 136247. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, H.-W.; Yang, Y.; Hu, X.-X.; Li, K.; Xu, S.; Li, J.-B.; Ke, G.; Zhang, X.-B. Near-Infrared Fluorescent Furin Probe for Revealing the Role of Furin in Cellular Carcinogenesis and Specific Cancer Imaging. Anal. Chem. 2019, 91, 9682–9689. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Li, Y.; Qi, Z. COX-2 inhibition mediated aggregation-induced emission photosensitizer target the Golgi apparatus for selective imaging of cancer cells and enhanced photodynamic therapy. Dye. Pigm. 2024, 222, 111897. [Google Scholar] [CrossRef]
- Yan, J.; Wang, K.; Gui, L.; Liu, X.; Ji, Y.; Lin, J.; Luo, M.; Xu, H.; Lv, J.; Tan, F.; et al. Diagnosing Orthotopic Lung Tumor Using a NTR-Activatable Near-Infrared Fluorescent Probe by Tracheal Inhalation. Anal. Chem. 2023, 95, 14402–14412. [Google Scholar] [CrossRef]
- Katayama, R.; Lovly, C.M.; Shaw, A.T. Therapeutic Targeting of Anaplastic Lymphoma Kinase in Lung Cancer: A Paradigm for Precision Cancer Medicine. Clin. Cancer Res. 2015, 21, 2227–2235. [Google Scholar] [CrossRef]
- Della Corte, C.M.; Viscardi, G.; Di Liello, R.; Fasano, M.; Martinelli, E.; Troiani, T.; Ciardiello, F.; Morgillo, F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol. Cancer 2018, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Golding, B.; Luu, A.; Jones, R.; Viloria-Petit, A.M. The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol. Cancer 2018, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, C.; Ji, M.; Wang, B.; Wang, P.; Zhou, G.; Dong, B.; Du, W.; Huang, L.; Wang, H.; et al. Design, synthesis and application of near-infrared fluorescence probe IR-780-Crizotinib in detection of ALK positive tumors. Protein Expr. Purif. 2021, 187, 105952. [Google Scholar] [CrossRef] [PubMed]
- Lucero, M.Y.; Chan, J. Photoacoustic imaging of elevated glutathione in models of lung cancer for companion diagnostic applications. Nat. Chem. 2021, 13, 1248–1256. [Google Scholar] [CrossRef]
- Kennedy, L.; Sandhu, J.K.; Harper, M.-E.; Cuperlovic-Culf, M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef]
- Xie, X.; Zhan, C.; Wang, J.; Zeng, F.; Wu, S. An Activatable Nano-Prodrug for Treating Tyrosine-Kinase-Inhibitor-Resistant Non-Small Cell Lung Cancer and for Optoacoustic and Fluorescent Imaging. Small 2020, 16, 2003451. [Google Scholar] [CrossRef]
- Song, X.; Wang, R.; Gao, J.; Han, X.; Jin, J.; Lv, C.; Yu, F. Construction of a biotin-targeting drug delivery system and its near-infrared theranostic fluorescent probe for real-time image-guided therapy of lung cancer. Chin. Chem. Lett. 2022, 33, 1567–1571. [Google Scholar] [CrossRef]
- Liu, S.; Song, W.; Gao, X.; Su, Y.; Gao, E.; Gao, Q. Discovery of Nonpeptide, Reversible HER1/HER2 Dual-Targeting Small-Molecule Inhibitors as Near-Infrared Fluorescent Probes for Efficient Tumor Detection, Diagnostic Imaging, and Drug Screening. Anal. Chem. 2018, 91, 1507–1515. [Google Scholar] [CrossRef]
- Lu, X.; Wu, M.; Luo, Q. Development of a NIR fluorescent probe for fluorescence-assisted EGFR-TKI applicable patients screening and drug resistance monitoring. Eur. J. Med. Chem. 2023, 261, 115818. [Google Scholar] [CrossRef]
- Dal Bello, M.G.; Filiberti, R.A.; Alama, A.; Orengo, A.M.; Mussap, M.; Coco, S.; Vanni, I.; Boccardo, S.; Rijavec, E.; Genova, C.; et al. The role of CEA, CYFRA21-1 and NSE in monitoring tumor response to Nivolumab in advanced non-small cell lung cancer (NSCLC) patients. J. Transl. Med. 2019, 17, 74. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lina, W.; Xuejun, Y. The diagnostic value of serum CEA, NSE and MMP-9 for on-small cell lung cancer. Open Med. 2016, 11, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Han, Y.W.; Liang, H.; Wang, L.M. Prognostic value of serum CYFRA21-1 and CEA for non-small-cell lung cancer. Cancer Med. 2015, 4, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Shao, K.; Wang, L.; Wen, Y.; Wang, T.; Teng, Y.; Shen, Z.; Pan, Z. Near-infrared carbon dots-based fluorescence turn on aptasensor for determination of carcinoembryonic antigen in pleural effusion. Anal. Chim. Acta 2019, 1068, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Ma, L.; Yang, H.; Si, F.; Liu, Y. Background-free and signal-amplified upconversion fluorescent biosensing platform for sensitive detection of CYFRA21-1. Talanta 2023, 262, 124659. [Google Scholar] [CrossRef]
- Ao, L.; Liao, T.; Huang, L.; Lin, S.; Xu, K.; Ma, J.; Qiu, S.; Wang, X.; Zhang, Q. Sensitive and simultaneous detection of multi-index lung cancer biomarkers by an NIR-Ⅱ fluorescence lateral-flow immunoassay platform. Chem. Eng. J. 2022, 436, 135204. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, X.; Liu, Z.; Ma, L.; Sun, P.; He, L.; Huang, H.; Bai, P. Highly sensitive “off-on” sensor based on MXene and magnetic microspheres for simultaneous detection of lung cancer biomarkers—Neuron specific enolase and carcinoembryonic antigen. Talanta 2024, 274, 126022. [Google Scholar] [CrossRef]
- Zhang, T.; Jia, Y.; Yu, Y.; Zhang, B.; Xu, F.; Guo, H. Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv. Drug Deliv. Rev. 2022, 186, 114319. [Google Scholar] [CrossRef]
- Ma, J.; Sun, R.; Xia, K.; Xia, Q.; Liu, Y.; Zhang, X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem. Rev. 2024, 124, 1738–1861. [Google Scholar] [CrossRef]
- Piantino, M.; Nakamoto, M.; Matsusaki, M. Development of Highly Sensitive Molecular Blocks at Cancer Microenvironment for Rapid Cancer Cell Death. Langmuir 2021, 38, 5209–5217. [Google Scholar] [CrossRef]
- Peng, X.; Huang, J.; Li, M.; Chen, Z.; Yan, W.; Qu, J. Lipid Membrane Alterations in Tumor Spheroids Revealed by Fluorescence Lifetime Microscopy Imaging. Anal. Chem. 2022, 95, 575–580. [Google Scholar] [CrossRef]
- Shi, H.; Lei, Y.; Ge, J.; He, X.; Cui, W.; Ye, X.; Liu, J.; Wang, K. A Simple, pH-Activatable Fluorescent Aptamer Probe with Ultralow Background for Bispecific Tumor Imaging. Anal. Chem. 2019, 91, 9154–9160. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhu, L.; Liu, W.; Zheng, Y.; Li, X.; Ye, J.; Li, B.; Chen, H.; Gao, Y. Near-infrared/pH dual-responsive nanocomplexes for targeted imaging and chemo/gene/photothermal tri-therapies of non-small cell lung cancer. Acta Biomater. 2020, 107, 242–259. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Zhang, R.; Yan, H.; Feng, Y.; Sun, F.; Yang, Z.; Qiao, C.; Mou, X.; Tian, J.; Wang, Z. An Activatable Near-Infrared Fluorescent Probe for Precise Detection of the Pulmonary Metastatic Tumors: A Traditional Molecule Having a Stunning Turn. Angew. Chem. Int. Ed. 2023, 135, e202313420. [Google Scholar] [CrossRef]
- Dong, B.; Song, W.; Lu, Y.; Sun, Y.; Lin, W. Revealing the Viscosity Changes in Lipid Droplets during Ferroptosis by the Real-Time and In Situ Near-Infrared Imaging. ACS Sens. 2020, 6, 22–26. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Li, M.; Ma, S.; Zhou, X.; Meng, A.; Han, W.; Zhou, J. Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chin. Chem. Lett. 2024, 35, 110020. [Google Scholar] [CrossRef]
- Isobe, Y.; Sato, K.; Nishinaga, Y.; Takahashi, K.; Taki, S.; Yasui, H.; Shimizu, M.; Endo, R.; Koike, C.; Kuramoto, N.; et al. Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer. EBioMedicine 2020, 52, 102632. [Google Scholar] [CrossRef]
- Furumoto, H.; Kato, T.; Wakiyama, H.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Endoscopic Applications of Near-Infrared Photoimmunotherapy (NIR-PIT) in Cancers of the Digestive and Respiratory Tracts. Biomedicines 2022, 10, 846. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Wang, M.; Niu, Y.; Xing, J.; Su, N. A live cell tracking NIR bioprobe for lung cancer cell metastasis monitoring. Dye. Pigm. 2020, 181, 108494. [Google Scholar] [CrossRef]
- Liu, K.T.; Yeh, I.J.; Chou, S.K.; Yen, M.C.; Kuo, P.L. Regulatory mechanism of fatty acid-CoA metabolic enzymes under endoplasmic reticulum stress in lung cancer. Oncol. Rep. 2018, 40, 2674–2682. [Google Scholar] [CrossRef]
- Chen, J.; Lei, C.; Zhang, H.; Huang, X.; Yang, Y.; Liu, J.; Jia, Y.; Shi, H.; Zhang, Y.; Zhang, J.; et al. RPL11 promotes non-small cell lung cancer cell proliferation by regulating endoplasmic reticulum stress and cell autophagy. BMC Mol. Cell Biol. 2023, 24, 7. [Google Scholar] [CrossRef] [PubMed]
- Cubillos-Ruiz, J.R.; Bettigole, S.E.; Glimcher, L.H. Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell 2017, 168, 692–706. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.; Long, X.; Song, W.; Lv, Z.; Zeng, H.; Wang, T.; Liu, X.; Dong, J.; Xu, P. MiR-34c acts as a tumor suppressor in non-small cell lung cancer by inducing endoplasmic reticulum stress through targeting HMGB1. OncoTargets Ther. 2019, 12, 5729–5739. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, S.; Zhang, C.; Liao, X.; Liu, T.; Jiang, Z.; Liu, D.; Tan, X.; Long, L.; Wang, Y.; et al. An NIR-Fluorophore-Based Therapeutic Endoplasmic Reticulum Stress Inducer. Adv. Mater. 2018, 30, 1800475. [Google Scholar] [CrossRef]
- Yang, K.; Liu, Y.; Deng, M.; Wang, P.; Cheng, D.; Li, S.; He, L. Imaging peroxynitrite in endoplasmic reticulum stress and acute lung injury with a near-infrared fluorescent probe. Anal. Chim. Acta 2024, 1286, 342050. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.; Wang, Z.; Jin, J.; Liu, Y.; Chen, C.; Tang, Z. Optimizing Energy Transfer in Nanostructures Enables In Vivo Cancer Lesion Tracking via Near-Infrared Excited Hypoxia Imaging. Adv. Mater. 2020, 32, 1907718. [Google Scholar] [CrossRef]
- Tang, L.; Tian, M.; Chen, H.; Yan, X.; Zhong, K.; Bian, Y. An ESIPT-based mitochondria-targeted ratiometric and NIR-emitting fluorescent probe for hydrogen peroxide and its bioimaging in living cells. Dye. Pigm. 2018, 158, 482–489. [Google Scholar] [CrossRef]
- Mao, W.; Zhu, M.; Yan, C.; Ma, Y.; Guo, Z.; Zhu, W. Rational Design of Ratiometric Near-Infrared Aza-BODIPY-Based Fluorescent Probe for in Vivo Imaging of Endogenous Hydrogen Peroxide. ACS Appl. Bio. Mater. 2019, 3, 45–52. [Google Scholar] [CrossRef]
- Chen, M.; Liang, Z.; Fan, X.; Qu, R.; Wang, H.; Chen, T. A ratiometric ESIPT fluorescent probe for detection of anticancer-associated H2O2 level in vitro and in vivo. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 276, 121163. [Google Scholar] [CrossRef]
- Zhang, X.; He, N.; Huang, Y.; Yu, F.; Li, B.; Lv, C.; Chen, L. Mitochondria-targeting near-infrared ratiometric fluorescent probe for selective imaging of cysteine in orthotopic lung cancer mice. Sens. Actuators B Chem. 2019, 282, 69–77. [Google Scholar] [CrossRef]
- Tang, F.; Liu, J.-Y.; Wu, C.-Y.; Liang, Y.-X.; Lu, Z.-L.; Ding, A.-X.; Xu, M.-D. Two-Photon Near-Infrared AIE Luminogens as Multifunctional Gene Carriers for Cancer Theranostics. ACS Appl. Mater. Interfaces 2021, 13, 23384–23395. [Google Scholar] [CrossRef]
- Kim, H.K.; Quan, Y.H.; Choi, B.H.; Park, J.-H.; Han, K.N.; Choi, Y.; Kim, B.-M.; Choi, Y.H. Intraoperative pulmonary neoplasm identification using near-infrared fluorescence imaging. Eur. J. Cardiothorac. Surg. 2016, 49, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Keating, J.J.; Runge, J.J.; Singhal, S.; Nims, S.; Venegas, O.; Durham, A.C.; Swain, G.; Nie, S.; Low, P.S.; Holt, D.E. Intraoperative near-infrared fluorescence imaging targeting folate receptors identifies lung cancer in a large-animal model. Cancer 2016, 123, 1051–1060. [Google Scholar] [CrossRef]
- Newton, A.D.; Predina, J.D.; Corbett, C.J.; Frenzel-Sulyok, L.G.; Xia, L.; Petersson, E.J.; Tsourkas, A.; Nie, S.; Delikatny, E.J.; Singhal, S. Optimization of Second Window Indocyanine Green for Intraoperative Near-Infrared Imaging of Thoracic Malignancy. J. Am. Coll. Surg. 2019, 228, 188–197. [Google Scholar] [CrossRef]
- Tummers, Q.R.; Hoogstins, C.E.; Gaarenstroom, K.N.; de Kroon, C.D.; van Poelgeest, M.I.; Vuyk, J.; Bosse, T.; Smit, V.T.; van de Velde, C.J.; Cohen, A.F. Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17. Oncotarget 2016, 7, 32144. [Google Scholar] [CrossRef] [PubMed]
- Burggraaf, J.; Kamerling, I.M.; Gordon, P.B.; Schrier, L.; De Kam, M.L.; Kales, A.J.; Bendiksen, R.; Indrevoll, B.; Bjerke, R.M.; Moestue, S.A. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med. 2015, 21, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Hoogstins, C.E.; Boogerd, L.S.; Sibinga Mulder, B.G.; Mieog, J.S.D.; Swijnenburg, R.J.; van de Velde, C.J.; Farina Sarasqueta, A.; Bonsing, B.A.; Framery, B.; Pèlegrin, A. Image-guided surgery in patients with pancreatic cancer: First results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent. Ann. Surg. Oncol. 2018, 25, 3350–3357. [Google Scholar] [CrossRef]
- Gao, R.W.; Teraphongphom, N.; de Boer, E.; van den Berg, N.S.; Divi, V.; Kaplan, M.J.; Oberhelman, N.J.; Hong, S.S.; Capes, E.; Colevas, A.D. Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers. Theranostics 2018, 8, 2488. [Google Scholar] [CrossRef]
- Newton, A.D.; Predina, J.D.; Nie, S.; Low, P.S.; Singhal, S. Intraoperative fluorescence imaging in thoracic surgery. J. Surg. Oncol. 2018, 118, 344–355. [Google Scholar] [CrossRef]
- Jiao, J.; Zhang, J.; Yang, F.; Song, W.; Han, D.; Wen, W.; Qin, W. Quicker, deeper and stronger imaging: A review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages. Eur. J. Pharm. Biopharm. 2020, 152, 123–143. [Google Scholar] [CrossRef]
- Neijenhuis, L.K.A.; de Myunck, L.D.A.N.; Bijlstra, O.D.; Kuppen, P.J.K.; Hilling, D.E.; Borm, F.J.; Cohen, D.; Mieog, J.S.D.; Steup, W.H.; Braun, J.; et al. Near-Infrared Fluorescence Tumor-Targeted Imaging in Lung Cancer: A Systematic Review. Life 2022, 12, 446. [Google Scholar] [CrossRef]
- Chen, H.; Guo, S.; Liu, Y.; Jiang, H.; Liao, Y.-X.; Shen, J.; Song, W.; Hou, J.-T. A stable NIR fluorescent probe for imaging lipid droplets in triple-negative breast cancer. Sens. Actuators B Chem. 2024, 398, 134740. [Google Scholar] [CrossRef]
- Xiang, F.F.; Zhang, H.; Wu, Y.L.; Chen, Y.J.; Liu, Y.Z.; Chen, S.Y.; Guo, Y.Z.; Yu, X.Q.; Li, K. Machine-Learning-Assisted Rational Design of Si horizontal line Rhodamine as Cathepsin-pH-Activated Probe for Accurate Fluorescence Navigation. Adv. Mater. 2024, 36, e2404828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xiang, F.F.; Liu, Y.Z.; Chen, Y.J.; Zhou, D.H.; Liu, Y.H.; Chen, S.Y.; Yu, X.Q.; Li, K. Molecular Engineering of Sulfone-Xanthone Chromophore for Enhanced Fluorescence Navigation. JACS Au 2023, 3, 3462–3472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-N.; Zhang, H.; Chen, S.-Y.; Liu, Y.-Z.; Yang, X.-H.; Xiang, F.-F.; Liu, Y.-H.; Li, K.; Yu, X.-Q. γ-Glutamyltranspeptidase and pH based “AND” logic gate fluorescent probe for orthotopic breast tumor imaging. Chem. Commun. 2023, 59, 2795–2798. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.Y.; Chen, P.; Liu, Y.Z.; Shi, L.; Chen, X.; Liu, Y.H.; Zhang, H.; Zhang, L.N.; Li, K.; Yu, X.Q. Rational Design of Polymethine Dyes with NIR-II Emission and High Photothermal Conversion Efficiency for Multimodal-Imaging-Guided Photo-Immunotherapy. Adv. Mater. 2023, 35, e2210179. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Hom, M.E.; van den Berg, N.S.; Lwin, T.M.; Lee, Y.-J.; Prilutskiy, A.; Faquin, W.; Yang, E.; Saladi, S.V.; Varvares, M.A.; et al. First Clinical Results of Fluorescence Lifetime-enhanced Tumor Imaging Using Receptor-targeted Fluorescent Probes. Clin. Cancer Res. 2022, 28, 2373–2384. [Google Scholar] [CrossRef]
- Barth, N.D.; Van Dalen, F.J.; Karmakar, U.; Bertolini, M.; Mendive-Tapia, L.; Kitamura, T.; Verdoes, M.; Vendrell, M. Enzyme-Activatable Chemokine Conjugates for In Vivo Targeting of Tumor-Associated Macrophages. Angew. Chem. Int. Ed. Engl. 2022, 61, e202207508. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, Y.; Xue, Y.; Fang, B.; Li, Y.; Zhu, X.; Du, Y.; Peng, P. NETosis-Inspired Cell Surface-Constrained Framework Nucleic Acids Traps (FNATs) for Cascaded Extracellular Recognition and Cellular Behavior Modulation. Angew. Chem. Int. Ed. Engl. 2024, 136, e202319908. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Y.; Xu, K.; Dai, Z. Current trends and key considerations in the clinical translation of targeted fluorescent probes for intraoperative navigation. Aggregate 2021, 2, e23. [Google Scholar] [CrossRef]
- Mi, J.; Li, C.; Yang, F.; Shi, X.; Zhang, Z.; Guo, L.; Jiang, G.; Li, Y.; Wang, J.; Yang, F.; et al. Comparative Study of Indocyanine Green Fluorescence Imaging in Lung Cancer with Near-Infrared-I/II Windows. Ann. Surg. Oncol. 2023, 31, 2451–2460. [Google Scholar] [CrossRef]
- He, S.; Cheng, P.; Pu, K. Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 2023, 7, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, S.; Xu, C.; Jiang, Y.; Miao, Q.; Pu, K. An Activatable Polymeric Nanoprobe for Fluorescence and Photoacoustic Imaging of Tumor-Associated Neutrophils in Cancer Immunotherapy. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203184. [Google Scholar] [CrossRef] [PubMed]
Serial Number | Name | λex (nm) | λem (nm) | Stokes Shift (nm) | Treatment Type | Species of Detection | Cell Localization |
---|---|---|---|---|---|---|---|
01 | GNS@BSA/I-MMP2 | 710 | 790 | 80 | PTT/PDT | MMP-2 | Cytoplasm |
02 | F-1 | 468 | 650 | 182 | - | NE | - |
03 | DMC-βgal | 725 | 770 | 45 | - | β-gal | - |
04 | HA-apn | 550 | 835 | 285 | - | APN | Cytoplasm |
05 | ENBO-ML210 | 640 ± 20 | 700 ± 20 | ±60 | - | GPX4 | Mitochondria/Lysosomes/Endoplasmic reticulum |
06 | NIR-ASM | 460 | 646 | 186 | - | NQO1 | Cytoplasm |
07 | LET-10 | 660 | 740 | 80 | - | NQO1 | - |
08 | HCy-Q | 680 | 747 | 67 | - | NQO1/Viscosity | Mitochondria |
09 | HD-F | 635 | 660–750 | 25–115 | - | Furin | Golgi apparatus |
10 | TTPI | - | 690 | - | PDT/Chemotherapy | COX-2 | Golgi apparatus |
11 | IR-ABS | 725 | 850 | 125 | - | NADH/NTR | - |
12 | IR-780-Crizotinib | - | 809 | - | Chemotherapy | ALK | - |
13 | TPG | 635 | 670–770 | 35–135 | Chemotherapy | GSH | Cytoplasm |
14 | CEL@G-SS-NIR | 675 | 710 | 35 | Chemotherapy | GSH | - |
15 | TBG | 704 | 690–800 | −14–96 | Chemotherapy | GSH | Cytoplasm |
16 | CY3-AFTN and Cy5-AFTN | 488/641 | 570/674 | 82 and 33 | - | HER1/HER2 | Endoplasmic reticulum/Mitochondria/Nucleus |
17 | LX | 720 | 750 | 50 | - | ROS | - |
18 | NIR-CDs-DNA-AuNRs@SiO2-Aptamer | 420 | 683(NIR-CDs) | 263 | - | CEA | Nonvivo probe |
19 | Probe 19 | 980 | 540 | −440 | - | CYFRA21-1 | Nonvivo probe |
20 | Probe 20 | 780 | 1050 | 270 | - | CEA/CYFRA21-1/NSE | Nonvivo probe |
21 | Probe 21 | - | 626 | - | - | CEA/NSE | Nonvivo probe |
22 | pH-AAP | 640 | 650–720 | 10–80 | - | Acidic environment | Membrane/Lysosome |
23 | CE7Q/CQ/S | 633 | 806 | 173 | Chemotherapy/Gene therapy/PTT | Acidic environment | Lysosome |
24 | PMT9 | - | - | - | - | Acidic environment | - |
25 | BDHT | 561 | 663–738 | 102–177 | - | Viscosity | LDs |
26 | BFZ | 633 | 650–750 | 17–117 | - | Polarity | LDs |
27 | rova-IR700 | - | - | - | - | DLL3 | Membrane |
28 | Cy-Lyso | 760 | 782 | 22 | - | Organelle | Lysosome |
29 | IR-34 | 770 | 830 | 60 | Paraptosis | NDUFS1 | Mitochondria |
30 | DCM-Br-ONOO | 570 | 680 | 110 | - | ONOO− | Endoplasmic reticulum |
31 | BMU-Ru | 980 | 613 | −367 | - | Oxygen concentration | - |
32 | HBTPB | 312 | 669 | 357 | - | H2O2 | Mitochondria |
33 | BP5-NB-OB | 675 | 700/720 | 25–45 | - | H2O2 | - |
34 | HBQ-L | 405 | 642 | 237 | - | H2O2 | Mitochondria |
35 | Cy-OAcr | 520/550/740 | - | - | - | Cys | Mitochondria |
36 | Probe 36 | 504 (one-photon) 1040 (TP) | 550/870 | - | PDT/Gene therapy | - | Cytoplasm |
Serial Number | Name | NIR-1/II | Target | Route of Administration | Cancer Type | Clinical Status (I/II/III) |
---|---|---|---|---|---|---|
01 | EC-17 [94] | Non-NIR | Folate receptor | Intravenous | Lung, breast, ovarian, renal cell cancer | I/II |
02 | GE-137 (EMI-137) [95] | NIR-I | c-MET | Intravenous | Lung, colonic cancer | I/II |
03 | SGM-101 [96] | NIR-I | CEA | Intravenous | Lung, colon, rectum, pancreas cancer/Peritoneal carcinomatosis/Colorectal neoplasms | I/II/III |
04 | Panitumumab-IRDye800CW [97] | NIR-I | EGFR | Intravenous | Lung carcinoma/Brain tumor/Pancreatic cancer | I/II |
05 | OTL-38 [12] | NIR-I | Folate receptor | Intravenous | Lung, ovarian cancer | III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, Y.; Su, J.; Zhang, L.; Liu, H. Progression in Near-Infrared Fluorescence Imaging Technology for Lung Cancer Management. Biosensors 2024, 14, 501. https://doi.org/10.3390/bios14100501
Chen X, Li Y, Su J, Zhang L, Liu H. Progression in Near-Infrared Fluorescence Imaging Technology for Lung Cancer Management. Biosensors. 2024; 14(10):501. https://doi.org/10.3390/bios14100501
Chicago/Turabian StyleChen, Xinglong, Yuning Li, Jialin Su, Lemeng Zhang, and Hongwen Liu. 2024. "Progression in Near-Infrared Fluorescence Imaging Technology for Lung Cancer Management" Biosensors 14, no. 10: 501. https://doi.org/10.3390/bios14100501
APA StyleChen, X., Li, Y., Su, J., Zhang, L., & Liu, H. (2024). Progression in Near-Infrared Fluorescence Imaging Technology for Lung Cancer Management. Biosensors, 14(10), 501. https://doi.org/10.3390/bios14100501