Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Reagents
2.2. Enzyme-Linked Oligonucleotide Assay (ELONA)
2.3. Assembly of Streptavidin-Aptamer (SA) Bead Complex
2.4. Time-Point Optimisation
2.5. RBD Detection and Quantification
3. Results and Discussion
3.1. Target Binding Affinity and Specificity
3.2. Assembly of the Streptavidin-Aptamer (SA) Bead Complex
3.3. Incubation Time Optimisation
3.4. RBD Protein Detection and Quantification
3.5. Assay Sensitivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mayer, G.; Menger, M.M. Nucleic Acid Aptamers: Selection, Characterization, and Application; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Tungsirisurp, S.; O’Reilly, R.; Napier, R. Nucleic acid aptamers as aptasensors for plant biology. Trends Plant Sci. 2023, 28, 359–371. [Google Scholar] [CrossRef]
- Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 2019, 37, 28–50. [Google Scholar] [CrossRef]
- Balamurugan, S.; Obubuafo, A.; Soper, S.A.; Spivak, D.A. Surface immobilization methods for aptamer diagnostic applications. Anal. Bioanal. Chem. 2008, 390, 1009–1021. [Google Scholar] [CrossRef]
- Aljohani, M.M.; Cialla-May, D.; Popp, J.; Chinnappan, R.; Al-Kattan, K.; Zourob, M. Aptamers: Potential Diagnostic and Therapeutic Agents for Blood Diseases. Molecules 2022, 27, 383. [Google Scholar] [CrossRef]
- Gooch, J.; Daniel, B.; Parkin, M.; Frascione, N. Developing aptasensors for forensic analysis. TrAC Trends Anal. Chem. 2017, 94, 150–160. [Google Scholar] [CrossRef]
- Gooch, J.; Tungsirisurp, S.; Costanzo, H.; Napier, R.; Frascione, N. Generating aptamers towards human sperm cells using massively parallel sequencing. Anal. Bioanal. Chem. 2021, 413, 5821–5834. [Google Scholar] [CrossRef]
- Izzi-Engbeaya, C.; Abbara, A.; Cass, A.; Dhillo, W.S. Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility. Int. J. Mol. Sci. 2020, 21, 7394. [Google Scholar] [CrossRef]
- Liang, S.; Kinghorn, A.B.; Voliotis, M.; Prague, J.K.; Veldhuis, J.D.; Tsaneva-Atanasova, K.; McArdle, C.A.; Li, R.H.W.; Cass, A.E.G.; Dhillo, W.S.; et al. Measuring luteinising hormone pulsatility with a robotic aptamer-enabled electrochemical reader. Nat. Commun. 2019, 10, 852. [Google Scholar] [CrossRef]
- Mie, M.; Matsumoto, R.; Mashimo, Y.; Cass, A.E.G.; Kobatake, E. Development of drug-loaded protein nanoparticles displaying enzymatically-conjugated DNA aptamers for cancer cell targeting. Mol. Biol. Rep. 2019, 46, 261–269. [Google Scholar] [CrossRef]
- Musumeci, D.; Platella, C.; Riccardi, C.; Moccia, F.; Montesarchio, D. Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics. Cancers 2017, 9, 174. [Google Scholar] [CrossRef]
- Cruz-Aguado, J.A.; Penner, G. Fluorescence Polarization Based Displacement Assay for the Determination of Small Molecules with Aptamers. Anal. Chem. 2008, 80, 8853–8855. [Google Scholar] [CrossRef]
- Han, K.; Liu, T.; Wang, Y.; Miao, P. Electrochemical aptasensors for detection of small molecules, macromolecules, and cells. Rev. Anal. Chem. 2016, 35, 201–211. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Lee, H.J. An aptamer-aptamer sandwich assay with nanorod-enhanced surface plasmon resonance for attomolar concentration of norovirus capsid protein. Sens. Actuators B Chem. 2018, 273, 1029–1036. [Google Scholar] [CrossRef]
- Kolm, C.; Cervenka, I.; Aschl, U.J.; Baumann, N.; Jakwerth, S.; Krska, R.; Mach, R.L.; Sommer, R.; DeRosa, M.C.; Kirschner, A.K.T.; et al. DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Sci. Rep. 2020, 10, 20917. [Google Scholar] [CrossRef]
- Maugi, R.; Gamble, B.; Bunka, D.; Platt, M. A simple displacement aptamer assay on resistive pulse sensor for small molecule detection. Talanta 2021, 225, 122068. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, N.; Zhang, Z.; Xu, D.; Ma, S.; Wang, X.; Zhou, T.; Zhang, G.; Wang, F. Construction of Aptamer-Based Molecular Beacons with Varied Blocked Structures and Targeted Detection of Thrombin. Langmuir 2021, 37, 8738–8745. [Google Scholar] [CrossRef]
- Zhu, Z.; Schmidt, T.; Mahrous, M.; Guieu, V.; Perrier, S.; Ravelet, C.; Peyrin, E. Optimization of the structure-switching aptamer-based fluorescence polarization assay for the sensitive tyrosinamide sensing. Anal. Chim. Acta 2011, 707, 191–196. [Google Scholar] [CrossRef]
- Gupta, A.; Mathew, R.; Anand, A.; Bhardwaj, T.; Singh, A.; Singh, K.; Kumar, A.; Mishra, P.R.; Sharma, T.K. A DNA aptamer-based assay for the detection of soluble ST2, a prognostic biomarker for monitoring heart failure. Int. J. Biol. Macromol. 2024, 256 Pt 1, 128295. [Google Scholar] [CrossRef]
- Fellows, T.; Ho, L.; Flanagan, S.; Fogel, R.; Ojo, D.; Limson, J. Gold nanoparticle-streptavidin conjugates for rapid and efficient screening of aptamer function in lateral flow sensors using novel CD4-binding aptamers identified through Crossover-SELEX. Analyst 2020, 145, 5180–5193. [Google Scholar] [CrossRef]
- Kang, J.; Yeom, G.; Ha, S.-J.; Kim, M.-G. Development of a DNA aptamer selection method based on the heterogeneous sandwich form and its application in a colorimetric assay for influenza A virus detection. New J. Chem. 2019, 43, 6883–6889. [Google Scholar] [CrossRef]
- Kaiser, L.; Weisser, J.; Kohl, M.; Deigner, H.P. Small molecule detection with aptamer based lateral flow assays: Applying aptamer-C-reactive protein cross-recognition for ampicillin detection. Sci. Rep. 2018, 8, 5628. [Google Scholar] [CrossRef]
- Chinnappan, R.; AlZabn, R.; Abu-Salah, K.M.; Zourob, M. An aptamer based fluorometric microcystin-LR assay using DNA strand-based competitive displacement. Mikrochim. Acta 2019, 186, 435. [Google Scholar] [CrossRef]
- Li, Y.; Sun, L.; Zhao, Q. Development of aptamer fluorescent switch assay for aflatoxin B1 by using fluorescein-labeled aptamer and black hole quencher 1-labeled complementary DNA. Anal. Bioanal. Chem. 2018, 410, 6269–6277. [Google Scholar] [CrossRef]
- Yuan, Y.; Song, M.; Cao, Y.; Huang, Q.; Lu, F. Fine-tuning of aptamer complementary DNA for fluorescence resonance energy transfer assay. Microchem. J. 2023, 184, 108163. [Google Scholar] [CrossRef]
- Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar] [CrossRef]
- Pashchenko, O.; Shelby, T.; Banerjee, T.; Santra, S. A Comparison of Optical, Electrochemical, Magnetic, and Colorimetric Point-of-Care Biosensors for Infectious Disease Diagnosis. ACS Infect. Dis. 2018, 4, 1162–1178. [Google Scholar] [CrossRef]
- Xiao, Y.; Piorek, B.D.; Plaxco, K.W.; Heeger, A.J. A Reagentless Signal-On Architecture for Electronic, Aptamer-Based Sensors via Target-Induced Strand Displacement. Am. Chem. Soc. 2005, 127, 17990–17991. [Google Scholar] [CrossRef]
- Zuo, X.; Song, S.; Zhang, J.; Pan, D.; Wang, L.; Fan, C. A Target-Responsive Electrochemical Aptamer Switch (TREAS) for Reagentless Detection of Nanomolar ATP. Am. Chem. Soc. 2007, 129, 1042–1043. [Google Scholar] [CrossRef]
- Husken, N.; Gebala, M.; Battistel, A.; La Mantia, F.; Schuhmann, W.; Metzler-Nolte, N. Impact of single basepair mismatches on electron-transfer processes at Fc-PNA⋅DNA modified gold surfaces. Chemphyschem 2012, 13, 131–139. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Y.; Zhang, X.; Zhou, J.; Xiong, E.; Li, X.; Chen, J. A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy. Biosens. Bioelectron. 2016, 79, 22–28. [Google Scholar] [CrossRef]
- Feagin, T.A.; Maganzini, N.; Soh, H.T. Strategies for Creating Structure-Switching Aptamers. ACS Sens. 2018, 3, 1611–1615. [Google Scholar] [CrossRef]
- Ma, X.; Qiao, S.; Sun, H.; Su, R.; Sun, C.; Zhang, M. Development of Structure-Switching Aptamers for Kanamycin Detection Based on Fluorescence Resonance Energy Transfer. Front. Chem. 2019, 7, 29. [Google Scholar] [CrossRef]
- Li, J.J.; Chu, Y.; Lee, B.Y.; Xie, X.S. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Res. 2008, 36, e36. [Google Scholar] [CrossRef]
- Urata, H.; Nomura, K.; Wada, S.; Akagi, M. Fluorescent-labeled single-strand ATP aptamer DNA: Chemo- and enantio-selectivity in sensing adenosine. Biochem. Biophys. Res. Commun. 2007, 360, 459–463. [Google Scholar] [CrossRef]
- Cleri, F.; Lensink, M.F.; Blossey, R. DNA Aptamers Block the Receptor Binding Domain at the Spike Protein of SARS-CoV-2. Front. Mol. Biosci. 2021, 8, 713003. [Google Scholar] [CrossRef]
- Moutsiopoulou, A.; Broyles, D.; Dikici, E.; Daunert, S.; Deo, S.K. Molecular Aptamer Beacons and Their Applications in Sensing, Imaging, and Diagnostics. Small 2019, 15, e1902248. [Google Scholar] [CrossRef]
- Zhang, Z.; Tao, C. Rational design of a mismatched aptamer-DNA duplex probe to improve the analytical performance of electrochemical aptamer sensors. Electrochim. Acta 2016, 209, 479–485. [Google Scholar] [CrossRef]
- Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein. Anal. Chem. 2020, 92, 9895–9900. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Rychlik, W.; Spencer, W.J.; Rhoads, R.E. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 1990, 18, 6409–6412. [Google Scholar] [CrossRef]
- NeutrAvidin® Agarose Resins; Thermo Scientific: Waltham, MA, USA, 2012.
- Nutiu, R.; Li, Y. Structure-Switching Signaling Aptamers. Am. Chem. Soc. 2003, 125, 4771–4778. [Google Scholar] [CrossRef]
- Mu, Y.; Chen, Z.; Zhan, J.; Zhang, J. Recent Advances in Aptamer-Based Sensors for In Vitro Detection of Small Molecules. Anal. Sens. 2024, e202400027. [Google Scholar] [CrossRef]
- Tian, C.; Zhao, L.; Zhu, J.; Zhang, S. Simultaneous detection of trace Hg2+ and Ag+ by SERS aptasensor based on a novel cascade amplification in environmental water. Chem. Eng. J. 2022, 435, 133879. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y.; Wang, S.; Yan, M.; Huang, J.; Yang, X. Label-Free and Regenerable Aptasensor for Real-Time Detection of Cadmium(II) by Dual Polarization Interferometry. Anal. Chem. 2020, 92, 10007–10015. [Google Scholar] [CrossRef]
- Yang, H.; Xia, L.; Zheng, J.; Xie, Z.; Zhou, J.; Wu, Y. Screening and identification of a DNA aptamer to construct the label-free fluorescent aptasensor for ultrasensitive and selective detection of clothianidin residue in agricultural products. Talanta 2023, 262, 124712. [Google Scholar] [CrossRef]
- Tiwari, G.; Tiwari, R. Bioanalytical method validation: An updated review. Pharm. Methods 2010, 1, 25–38. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Equation | Y = 0.03772(X) − 0.1130 |
Slope | 0.03772 |
R-squared | 0.9962 |
Sy.x (σ) | 0.7715 |
LOD | 67.5 nM |
LOQ | 204.5 nM |
RSD% | 3.7–8.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tungsirisurp, S.; Frascione, N. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay. Biosensors 2024, 14, 509. https://doi.org/10.3390/bios14100509
Tungsirisurp S, Frascione N. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay. Biosensors. 2024; 14(10):509. https://doi.org/10.3390/bios14100509
Chicago/Turabian StyleTungsirisurp, Sireethorn, and Nunzianda Frascione. 2024. "Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay" Biosensors 14, no. 10: 509. https://doi.org/10.3390/bios14100509
APA StyleTungsirisurp, S., & Frascione, N. (2024). Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay. Biosensors, 14(10), 509. https://doi.org/10.3390/bios14100509