Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Ru@UiO-66-NH2 Probe
2.3. Instruments and Data Collection
2.4. Fluorescence Detection of L-Arginine
2.5. Recovery Rate Measurement
3. Results and Discussion
3.1. Characterization of Ru@UiO-66-NH2 Probe
3.2. Optimization of Detection Conditions
3.3. Fluorescence Sensing on L-Arginine
3.4. Selectivity and Specificity for Sensing L-Arginine, and Stability of Ru@UiO-66-NH2
3.5. Sensing Performance in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Qin, B.; Zheng, J.; Gan, Y.; Yang, R. Intermolecular weak interaction of imidacloprid investigated by terahertz spectroscopy and theoretical calculation. Optik 2021, 241, 167063. [Google Scholar] [CrossRef]
- Yoshimura, M.; Conway-Campbell, B.; Ueta, Y. Arginine vasopressin: Direct and indirect action on metabolism. Peptides 2021, 142, 170555. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, A.A.; Rodionov, R.N.; McEvoy, M.; Zinellu, A.; Carru, C.; Sotgia, S. New horizons in arginine metabolism, ageing and chronic disease states. Age Ageing 2019, 48, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Mondanelli, G.; Iacono, A.; Allegrucci, M.; Puccetti, P.; Grohmann, U. Immunoregulatory Interplay between arginine and tryptophan metabolism in health and disease. Front. Immunol. 2019, 10, 1565. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, J.; Khondkar, W.; Morelli, M.B.; Wang, X.J.; Santulli, G.; Trimarco, V. Arginine and endothelial function. Biomedicines 2020, 8, 277. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.M.; Xiao, H.; Shao, F.Y.; Tan, B.; Hu, S.L. Arginine accelerates intestinal health through cytokines and intestinal microbiota. Int. Immunopharmacol. 2020, 81, 106029. [Google Scholar] [CrossRef]
- Geiger, R.; Rieckmann, J.C.; Wolf, T.; Basso, C.; Feng, Y.; Fuhrer, T.; Kogadeeva, M.; Picotti, P.; Meissner, F.; Mann, M.; et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 2016, 167, 829–842. [Google Scholar] [CrossRef]
- Poillet-Perez, L.; Xie, X.Q.; Zhan, L.E.; Yang, Y.; Sharp, D.W.; Hu, Z.S.; Su, X.Y.; Maganti, A.; Jiang, C.; Lu, W.Y.; et al. Autophagy maintains tumour growth through circulating arginine. Nature 2018, 563, 569–573. [Google Scholar] [CrossRef]
- Boger, R.H.; Bode-Böger, S.M.; Brandes, R.P.; Phivthong-ngam, L.; Böhme, M.; Nafe, R.; Mügge, A.; Frölich, J.C. Dietary L-arginine reduces the progression of atherosclerosis in cholesterol-fed rabbits: Comparison with lovastatin. Circulation 1997, 96, 1282–1290. [Google Scholar] [CrossRef]
- le Roux, C.W.; Ottosson, J.; Näslund, E.; Cohen, R.V.; Stenberg, E.; Sundbom, M.; Näslund, I. Bariatric surgery: There is a room for improvement to reduce mortality in patients with type 2 diabetes. Obes. Surg. 2021, 31, 461–463. [Google Scholar] [CrossRef]
- Yang, C.H.; Chen, Y.C.; Peng, S.Y.; Tsai, A.P.Y.; Lee, T.J.F.; Yen, J.H.; Liou, J.W. An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Sci. Rep. 2018, 8, 14602. [Google Scholar] [CrossRef] [PubMed]
- Yarani, R.; Jahani, M.; Tahmasebi, H.; Chehri, J.; Mansouri, K. L-arginine metabolism alteration by L-lysine intervention increased cell death in triple negative breast cancer cell. Ann. Oncol. 2019, 30, vi135. [Google Scholar] [CrossRef]
- Leuchtenberger, C.; Murmanis, I.; Murmanis, L.; Ito, S.; Weir, D.R. Interferometric dry mass and microspectrophotometric arginine determinations on bull sperm nuclei with normal and abnormal DNA content. Chromosoma 1956, 8, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Hamid, Y.; Fat’hi, M.R. A colorimetric-dispersive solid-phase extraction method for the sensitive and selective determination of iron using dissolvable bathocuproinedisulfonic acid-intercalated layered double hydroxide nanosheets. New J. Chem. 2018, 42, 5489–5498. [Google Scholar] [CrossRef]
- Ota, E.; Sakasegawa, S.I.; Ueda, S.; Konishi, K.; Akimoto, M.; Tateishi, T.; Kawano, M.; Hokazono, E.; Kayamori, Y. Preliminary evaluation of an improved enzymatic assay method for measuring potassium concentrations in serum. Clin. Chim. Acta 2015, 446, 73–75. [Google Scholar] [CrossRef]
- De Vita, E.; De Landro, M.; Massaroni, C.; Iadicicco, A.; Saccomandi, P.; Schena, E.; Campopiano, S. Fiber optic sensors-based thermal analysis of perfusion-mediated tissue cooling in liver undergoing laser ablation. IEEE Trans. Biomed. Eng. 2020, 68, 1066–1073. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Revenga-Parra, M.; Zamora, F.; Pariente, F.; Lorenzo, E. Nanostructured electrochemical detector for the quantification of amino acids related to metabolic diseases. Sens. Actuators B Chem. 2016, 236, 773–780. [Google Scholar] [CrossRef]
- Madi, P.S.; Gorokhov, D.A.; Mekhtiyev, R.A.; Nurmaganbetova, M.T. Research of Fiber-Optic Displacement Sensors; IOP Publishing: Bristol, UK, 2021; p. 012016. [Google Scholar]
- Li, S.; Hu, X.; Chen, Q.; Zhang, X.; Chai, H.; Huang, Y. Introducing bifunctional metal-organic frameworks to the construction of a novel ratiometric fluorescence sensor for screening acid phosphatase activity. Biosens. Bioelectron. 2019, 137, 133–139. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Gao, P.; Pan, Y.; Liu, J. A BODIPY-based turn-off fluorescent probe for mercury ion detection in solution and on test strips. J. Mol. Struct. 2022, 1262, 133015. [Google Scholar] [CrossRef]
- Wang, P.; Xue, S.; Chen, B.; Liao, F. A novel peptide-based fluorescent probe for highly selective detection of mercury (II) ions in real water samples and living cells based on aggregation-induced emission effect. Anal. Bioanal. Chem. 2022, 414, 4717–4726. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.W.H.; Peng, L.; Chen, Y.; Liu, Y.; Li, C.; Zhang, H.; Yang, W. A novel ratiometric fluorescence sensor based on lanthanide-functionalized MOF for Hg2+ detection. Talanta 2022, 250, 123710. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.J.; Tian, J.X.; Fang, Y.Z.; Chen, T.L.; Yu, R.; He, J.Y.; Zhang, Z.Y.; Xiao, Q. Terbium metal-organic framework/bovine serum albumin capped gold nanoclusters-based dual-emission reverse change ratio fluorescence nanoplatform for fluorimetric and colorimetric sensing of heparin and chondroitin sulfate. Sens. Actuators B Chem. 2022, 356, 131331. [Google Scholar] [CrossRef]
- Han, Z.X.; Gu, Y.X.; Wang, Y.; Dong, L.H.; Jiang, S. A novel NIR ratiometric fluorescent probe for hydrogen sulfide detection. J. Jiangsu Univ. 2020, 41, 575–579. [Google Scholar]
- Chen, L.; Liu, D.; Peng, J.; Du, Q.; He, H. Ratiometric fluorescence sensing of metal-organic frameworks: Tactics and perspectives. Coord. Chem. Rev. 2020, 404, 213113. [Google Scholar] [CrossRef]
- Guo, J.; Yang, L.; Gao, Z.; Zhao, C.; Mei, Y.; Song, Y.Y. Insight of MOF environment-dependent enzyme activity via MOFs-in-nanochannels configuration. ACS Catal. 2020, 10, 5949–5958. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Zhao, J.; Xu, H.; Gao, Z.; Wu, Z.Q.; Song, Y.Y. Rational design of mesoporous chiral MOFs as reactive pockets in nanochannels for enzyme-free identification of monosaccharide enantiomers. Chem. Sci. 2023, 14, 1742–1751. [Google Scholar] [CrossRef]
- Patel, N.; Shukla, P.; Lama, P.; Das, S.; Pal, T.K. Engineering of metal–organic frameworks as ratiometric sensors. Cryst. Growth Des. 2022, 22, 3518–3564. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, X.D.; Xie, X.F.; Guo, F.; Sun, W.Y. Amino group dependent sensing properties of metal–organic frameworks: Selective turn-on fluorescence detection of lysine and arginine. RSC Adv. 2020, 10, 37449–37455. [Google Scholar] [CrossRef]
- Peng, L.; Guo, H.; Wu, N.; Liu, B.; Wang, M.; Tian, J.; Ren, B.; Yu, Z.; Yang, W. Rapid detection of the biomarker for cystinuria by a metal-organic framework fluorescent sensor. Talanta 2023, 262, 124715. [Google Scholar] [CrossRef]
- Chi, J.; Song, Y.; Feng, L. A ratiometric fluorescent paper sensor based on dye-embedded MOF for high-sensitive detection of arginine. Biosens. Bioelectron. 2023, 241, 115666. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.F.; Bao, G.M.; Xia, Y.F.; Peng, X.X.; Peng, J.F.; He, J.X.; Lin, S.; Zeng, L.T.; Fan, Q.; Xiao, W.; et al. Recyclable europium functionalized metal-organic fluorescent probe for detection of tryptophan in biological fluids and food products. Anal. Chim. Acta 2021, 1180, 338897. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhong, C.; Song, Y.; Wang, L. Ratiometric fluorescence detection of melamine in milk by a zirconium-based metal-organic frameworks composite. Microchem. J. 2021, 162, 105837. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, H.S.; Li, X.H.; Waterhouse, G.I.N.; Ai, S.Y. Photoelectrochemical immunosensor for N6-methyladenine detection based on Ru@ UiO-66, Bi2O3 and Black TiO2. Biosens. Bioelectron. 2019, 131, 163–170. [Google Scholar] [CrossRef]
- He, J.; Wang, J.Q.; Chen, Y.J.; Zhang, J.P.; Duan, D.L.; Wang, Y.; Yan, Z.Y. A dye-sensitized Pt@UiO-66(Zr) metal-organic framework for visible-light photocatalytic hydrogen production. Chem. Commun. 2014, 50, 7063–7066. [Google Scholar] [CrossRef]
- Chen, C.Q.; Chen, D.Z.; Xie, S.S.; Quan, H.Y.; Luo, X.B.; Guo, L. Adsorption Behaviors of Organic Micropollutants on Zirconium Metal-Organic Framework UiO-66: Analysis of Surface Interactions. ACS Appl. Mater. Interfaces 2017, 9, 41043–41054. [Google Scholar] [CrossRef]
- Patel, G.; Menon, S. Recognition of lysine, arginine and histidine by novel p-sulfonatocalix [4] arene thiol functionalized gold nanoparticles in aqueous solution. Chem. Commun. 2009, 3563–3565. [Google Scholar] [CrossRef]
- Tarighat, M.A.; Ghorghosheh, F.H.; Abdi, G. Fe3O4@ SiO2-Ag nanocomposite colorimetric sensor for determination of arginine and ascorbic acid based on synthesized small size AgNPs by cystoseria algae extract. Mater. Sci. Eng. B 2022, 283, 115855. [Google Scholar] [CrossRef]
- Dong, J.; Dao, X.Y.; Zhang, X.Y.; Zhang, X.D.; Sun, W.Y. Sensing properties of NH2-MIL-101 series for specific amino acids via turn-on fluorescence. Molecules 2021, 26, 5336. [Google Scholar] [CrossRef]
- Guo, R.Z.; Mai, T.H.; Yang, Z.N.; Wang, H.Y.; Liu, H.Y. A pH-stable Tb-MOF as luminescence sensor for highly sensitive detection of amino acids through diverse sensing mechanism. Inorg. Chem. 2023, 62, 18209–18218. [Google Scholar] [CrossRef]
- Mi, G.; Yang, M.; Wang, C.; Zhang, B.; Hu, X.; Hao, H.; Fan, J. A simple “turn off-on” ratio fluorescent probe for sensitive detection of dopamine and lysine/arginine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 253, 119555. [Google Scholar] [CrossRef] [PubMed]
- He, L.; So, V.L.L.; Xin, J.H. A new rhodamine-thiourea/Al3+ complex sensor for the fast visual detection of arginine in aqueous media. Sens. Actuators B Chem. 2014, 192, 496–502. [Google Scholar] [CrossRef]
- Sha, H.; Yan, B. A pH-responsive Eu(iii) functionalized metal–organic framework hybrid luminescent film for amino acid sensing and anti-counterfeiting. J. Mater. Chem. C 2022, 10, 7633–7640. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Song, H.; Yu, M.; Wei, L.; Li, Z. Synthesis of dual-emission fluorescent carbon quantum dots and their ratiometric fluorescence detection for arginine in 100% water solution. New J. Chem. 2019, 43, 13234–13239. [Google Scholar] [CrossRef]
Samples | Added (mM) | Found (mM) | Recovery (%) | RSD (n = 3) (%) |
---|---|---|---|---|
1.7 | 1.92 | 113.09 | 1.74 | |
Green tea | 0.9 | 0.79 | 87.59 | 1.69 |
0.5 | 0.48 | 95.93 | 0.06 | |
1.7 | 1.50 | 87.95 | 1.22 | |
Grape juice | 0.9 | 0.76 | 84.27 | 1.10 |
0.5 | 0.48 | 96.65 | 0.09 | |
1.7 | 1.91 | 112.15 | 3.91 | |
Serum | 0.9 | 0.90 | 99.68 | 0.99 |
0.5 | 0.48 | 95.38 | 3.10 |
Sensors | Method | Linear Ranges | LOD | References |
---|---|---|---|---|
P-sulphonato calix capped gold nanoparticles | UV–vis | 4 × 10−6–10−4 mol L−1 | 4.0 μM | [37] |
Fe3O4@SiO2-AgNPs | UV–vis | 30–60 μM | 2.56 μM | [38] |
NH2-MIL-101-Al | Fluorescence | 0.2–1.0 mM | 45.1 μM | [39] |
Tb-MOF | Fluorescence | 0–2.31 mM | 7.06 μM | [40] |
AgInSe2@ZnS | Fluorescence | 0.2–1 mM | 26 μM | [41] |
Rhodamine-thiourea/Al3+ complex | Fluorescence | 0–1.2 × 10−4 mol L−1 | 2.3 μM | [42] |
Eu@ZnMOF | Fluorescence | 0.05–0.5 mM | 20.0 μM | [43] |
CDs | Fluorescence | 27–107 μM | 9.16 μM | [44] |
UiO-66-NH2 | Fluorescence | 0–0.645 mM | 21.5 μM | [29] |
Ru@UiO-66-NH2 | Fluorescence | 0.5–2 mM | 2.32 μM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Qi, J.; Li, J.; Pi, F. Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Biosensors 2024, 14, 512. https://doi.org/10.3390/bios14100512
Fan J, Qi J, Li J, Pi F. Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Biosensors. 2024; 14(10):512. https://doi.org/10.3390/bios14100512
Chicago/Turabian StyleFan, Jiawen, Junjie Qi, Jingkun Li, and Fuwei Pi. 2024. "Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine" Biosensors 14, no. 10: 512. https://doi.org/10.3390/bios14100512
APA StyleFan, J., Qi, J., Li, J., & Pi, F. (2024). Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Biosensors, 14(10), 512. https://doi.org/10.3390/bios14100512