A New Shear-Stress-Based Point-of-Care Technology for Evaluation of the Hemostatic Pattern in Whole Blood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Description
2.2. Optical System Calibration
2.3. Test Procedure
- Sample and Reagent Loading
- 2.
- Automated Test
- 3.
- Image Processing
2.4. Data Analysis and Output
2.5. Reagents
2.6. Blood Sampling
2.7. Statistics
3. Results
3.1. Smart Clot’s Approach to Global Hemostasis Assessment
3.2. Effect of Platelet Function Inhibitors on Primary Hemostasis and on Smart Clot’s Output
3.3. Effect of Thrombin Inhibitors on Secondary Hemostasis and on Smart Clot’s Output
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Task Force on Patient Blood Management for Adult Cardiac Surgery of the European Association for Cardio-Thoracic Surgery (EACTS) and the European Association of Cardiothoracic Anaesthesiology (EACTA); Boer, C.; Meesters, M.I.; Milojevic, M.; Benedetto, U.; Bolliger, D.; von Heymann, C.; Jeppsson, A.; Koster, A.; Osnabrugge, R.L.; et al. 2017 EACTS/EACTA Guidelines on patient blood management for adult cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2018, 32, 88–120. [Google Scholar] [CrossRef] [PubMed]
- Raphael, J.; Mazer, C.D.; Subramani, S.; Schroeder, A.; Abdalla, M.; Ferreira, R.; Roman, P.E.; Patel, N.; Welsby, I.; Greilich, P.E.; et al. Society of Cardiovascular Anesthesiologists Clinical Practice Improvement Advisory for Management of Perioperative Bleeding and Hemostasis in Cardiac Surgery Patients. J. Cardiothorac. Vasc. Anesth. 2019, 33, 2887–2899. [Google Scholar] [CrossRef] [PubMed]
- Kietaibl, S.; Ahmed, A.; Afshari, A.; Albaladejo, P.; Aldecoa, C.; Barauskas, G.; De Robertis, E.; Faraoni, D.; Filipescu, D.C.; Fries, D.; et al. Management of severe peri-operative bleeding: Guidelines from the European Society of Anaesthesiology and Intensive Care: Second update 2022. Eur. J. Anaesthesiol. 2023, 40, 226–304. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, R.; Afshari, A.; Bouillon, B.; Cerny, V.; Cimpoesu, D.; Curry, N.; Duranteau, J.; Filipescu, D.; Grottke, O.; Grønlykke, L.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Sixth edition. Crit. Care 2023, 27, 80. [Google Scholar] [CrossRef]
- Muñoz, M.; Stensballe, J.; Ducloy-Bouthors, A.-S.; Bonnet, M.-P.; De Robertis, E.; Fornet, I.; Goffinet, F.; Hofer, S.; Holzgreve, W.; Manrique, S.; et al. Patient blood management in obstetrics: Prevention and treatment of postpartum haemorrhage. A NATA consensus statement. Blood Transfus. 2019, 17, 112–136. [Google Scholar] [CrossRef]
- Jain, A.; Graveline, A.; Waterhouse, A.; Vernet, A.; Flaumenhaft, R.; Ingber, D.E. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat. Commun. 2016, 7, 10176. [Google Scholar] [CrossRef]
- Trevisan, B.M.; Porada, C.D.; Atala, A.; Almeida-Porada, G. Microfluidic devices for studying coagulation biology. Semin. Cell Dev. Biol. 2020, 112, 1–7. [Google Scholar] [CrossRef]
- Chan, J.; Michaelsen, K.; Estergreen, J.K.; Sabath, D.E.; Gollakota, S. Micro-mechanical blood clot testing using smartphones. Nat. Commun. 2022, 13, 831. [Google Scholar] [CrossRef]
- Mena, S.E.; Li, Y.; McCormick, J.; McCracken, B.; Colmenero, C.; Ward, K.; Burns, M.A. A droplet-based microfluidic viscometer for the measurement of blood coagulation. Biomicrofluidics 2020, 14, 014109. [Google Scholar] [CrossRef]
- Oshinowo, O.; Azer, S.S.; Lin, J.; Lam, W.A. Why platelet mechanotransduction matters for hemostasis and thrombosis. J. Thromb. Haemost. 2023, 21, 2339–2353. [Google Scholar] [CrossRef]
- Flier, J.S.; Underhill, L.H.; Furie, B.; Furie, B.C. Molecular and Cellular Biology of Blood Coagulation. N. Engl. J. Med. 1992, 326, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.M.; Weitz, J.I. Coagulation assays. Circulation 2005, 112, e53–e60. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, T.G.; Stefanadis, C. Vascular wall shear stress: Basic principles and methods. Hell. J. Cardiol. 2005, 46, 9–15. [Google Scholar]
- Ando, J.; Ohtsuka, A.; Korenaga, R.; Kawamura, T.; Kamiya, A. Wall shear stress rather than shear rate regulates cytoplasmic Ca++ responses to flow in vascular endothelial cells. Biochem. Biophys. Res. Commun. 1993, 190, 716–723. [Google Scholar] [CrossRef]
- Thomas, W. Stretching to image VWF in shear flow. Blood 2022, 140, 2419–2420. [Google Scholar] [CrossRef]
- Roest, M.; Reininger, A.; Zwaginga, J.J.; King, M.R.; Heemskerk, J.W.M. Biorheology Subcommittee of the SSC of the ISTH. Flow chamber-based assays to measure thrombus formation in vitro: Requirements for standardization. J. Thromb. Haemost. 2011, 9, 2322–2324. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Noris, P.; Biino, G.; Pecci, A.; Civaschi, E.; Savoia, A.; Seri, M.; Melazzini, F.; Loffredo, G.; Russo, G.; Bozzi, V.; et al. Platelet diameters in inherited thrombocytopenias: Analysis of 376 patients with all known disorders. Blood 2014, 124, e4–e19. [Google Scholar] [CrossRef]
- Folie, B.; McIntire, L.; Lasslo, A. Effect of a novel antiplatelet agent in mural thrombogenesis on collagen-coated glass. Blood 1988, 72, 1393–1400. [Google Scholar] [CrossRef]
- Bode, A.; Orton, S.; Frye, M.; Udis, B. Vesiculation of platelets during in vitro aging. Blood 1991, 77, 887–895. [Google Scholar] [CrossRef]
- Mazzucato, M.; De Marco, L.; Pradella, P.; Masotti, A.; Pareti, F.I. Porcine von Willebrand factor binding to human platelet GPIb induces transmembrane calcium influx. Thromb. Haemost. 1996, 75, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-F.; Chang, C.-H.; Ho, P.-L.; Chung, C.-H. FcγRII mediates platelet aggregation caused by disintegrins and GPIIb/IIIa monoclonal antibody, AP2. Exp. Hematol. 2008, 36, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Lev, E.I.; Osende, J.I.; Richard, M.F.; Robbins, J.A.; Delfin, J.A.; Rodriguez, O.; Sharma, S.K.; Jayasundera, T.; Badimon, J.J.; Marmur, J.D. Administration of abciximab to patients receiving tirofiban or eptifibatide: Effect on platelet function. J. Am. Coll. Cardiol. 2001, 37, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Menozzi, A.; Merlini, P.A.; Ardissino, D. Tirofiban in acute coronary syndromes. Expert Rev. Cardiovasc. Ther. 2005, 3, 193–206. [Google Scholar] [CrossRef]
- Lee, C.J.; Ansell, J.E. Direct thrombin inhibitors. Br. J. Clin. Pharmacol. 2011, 72, 581–592. [Google Scholar] [CrossRef]
- Mazzucato, M.; De Marco, L.; Masotti, A.; Pradella, P.; Bahou, W.F.; Ruggeri, Z.M. Characterization of the initial alpha-thrombin interaction with glycoprotein Ib alpha in relation to platelet activation. J. Biol. Chem. 1998, 273, 1880–1887. [Google Scholar] [CrossRef]
- Sang, Y.; Roest, M.; de Laat, B.; de Groot, P.G.; Huskens, D. Interplay between platelets and coagulation. Blood Rev. 2021, 46, 100733. [Google Scholar] [CrossRef]
- Mazzucato, M.; Spessotto, P.; Masotti, A.; De Appollonia, L.; Cozzi, M.R.; Yoshioka, A.; Perris, R.; Colombatti, A.; De Marco, L. Identification of domains responsible for von Willebrand factor type VI collagen interaction mediating platelet adhesion under high flow. J. Biol. Chem. 1999, 274, 3033–3041. [Google Scholar] [CrossRef]
- Chen, H.; Angerer, J.I.; Napoleone, M.; Reininger, A.J.; Schneider, S.W.; Wixforth, A.; Schneider, M.F.; Alexander-Katz, A. Hematocrit and flow rate regulate the adhesion of platelets to von Willebrand factor. Biomicrofluidics 2013, 7, 64113. [Google Scholar] [CrossRef]
- Kragh, T.; Napoleone, M.; Fallah, M.A.; Gritsch, H.; Schneider, M.F.; Reininger, A.J. High shear dependent von Willebrand factor self-assembly fostered by platelet interaction and controlled by ADAMTS13. Thromb. Res. 2014, 133, 1079–1087. [Google Scholar] [CrossRef]
- Sheriff, J.; Soares, J.S.; Xenos, M.; Jesty, J.; Bluestein, D. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann. Biomed. Eng. 2013, 41, 1279–1296. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hotaling, N.A.; Ku, D.N.; Forest, C.R. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses. PLoS ONE 2014, 9, e82493. [Google Scholar] [CrossRef] [PubMed]
- Haynes, L.M.; Dubief, Y.C.; Orfeo, T.; Mann, K.G. Dilutional control of prothrombin activation at physiologically relevant shear rates. Biophys. J. 2011, 100, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Laddomada, T.; Ranucci, M.; Baryshnikova, E. Blood viscosity during coagulation at different shear rates. Physiol. Rep. 2014, 2, e12065. [Google Scholar] [CrossRef]
- Siedlecki, C.A.; Eppell, S.J.; Marchant, R.E. Interactions of human von Willebrand Factor with a hydrophobic self-assembled monolayer studied by atomic force microscopy. J. Biomed. Mater. Res. 1994, 28, 971–980. [Google Scholar] [CrossRef]
- Novák, L.; Deckmyn, H.; Damjanovich, S.; Hársfalvi, J. Shear-dependent morphology of von Willebrand factor bound to immobilized collagen. Blood 2002, 99, 2070–2076. [Google Scholar] [CrossRef]
- Mazzucato, M.; Cozzi, M.R.; Battiston, M.; Jandrot-Perrus, M.; Mongiat, M.; Marchese, P.; Kunicki, T.J.; Ruggeri, Z.M.; De Marco, L. Distinct spatio-temporal Ca2+ signaling elicited by integrin alpha2beta1 and glycoprotein VI under flow. Blood 2009, 114, 2793–2801. [Google Scholar] [CrossRef]
- Ranucci, M.; Di Dedda, U.; Baryshnikova, E. Trials and Tribulations of Viscoelastic-Based Determination of Fibrinogen Concentration. Anesth. Analg. 2020, 130, 644–653. [Google Scholar] [CrossRef]
- Solomon, C.; Sørensen, B.; Hochleitner, G.; Kashuk, J.; Ranucci, M.; Schöchl, H. Comparison of whole blood fibrin-based clot tests in thrombelastography and thromboelastometry. Anesth. Analg. 2012, 114, 721–730. [Google Scholar] [CrossRef]
- Ranucci, M.; Baryshnikova, E. Sensitivity of Viscoelastic Tests to Platelet Function. J. Clin. Med. 2020, 9, 189. [Google Scholar] [CrossRef]
- Solomon, C.; Ranucci, M.; Hochleitner, G.; Schöchl, H.; Schlimp, C.J. Assessing the Methodology for Calculating Platelet Contribution to Clot Strength (Platelet Component) in Thromboelastometry and Thrombelastography. Anesth. Analg. 2015, 121, 868–878. [Google Scholar] [CrossRef]
Reagent Name | Reagent Composition | Reagent Scope |
---|---|---|
Reagent A | Calcium chloride | Re-calcification of the sample |
Reagent C | Acid-soluble type I collagen | Coating of the glass slide |
Reagent F | Fibrinogen from human plasma, Alexa Fluor 546 conjugate | Fluorescent labeling of fibrin(ogen) |
Reagent P | DiOC6(3) solution | Fluorescent labeling of platelets |
Washing Solution | Saline solution 0.9% | Washing of the perfusion chamber |
Smart Clot Output | Parameter Description | Units | Physiological Meaning |
---|---|---|---|
ID PLTS | Integrated Density Platelets | µm2 × MGV (mean gray value) | Pseudo-3D size of platelet thrombus |
ID FIB | Integrated Density Fibrin | µm2 × MGV | Pseudo-3D size of fibrin clot |
Dim Part | Mean Dimension of Particles (only Platelets) | µm2 | Platelets’ aggregation potential of the patient |
Lag Time | Lag Time (only Fibrin) (3-fold SD growth compared to baseline) | Time (s) | Starting time of fibrin formation |
Max Slope | Maximum Velocity (curve’s tangent maximum value) | Kinetics of the coagulation process |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foladore, A.; Lattanzio, S.; Lombardi, E.; Durante, C.; Baryshnikova, E.; Anguissola, M.; Rota, L.; Ranucci, M.; Mazzucato, M. A New Shear-Stress-Based Point-of-Care Technology for Evaluation of the Hemostatic Pattern in Whole Blood. Biosensors 2024, 14, 518. https://doi.org/10.3390/bios14110518
Foladore A, Lattanzio S, Lombardi E, Durante C, Baryshnikova E, Anguissola M, Rota L, Ranucci M, Mazzucato M. A New Shear-Stress-Based Point-of-Care Technology for Evaluation of the Hemostatic Pattern in Whole Blood. Biosensors. 2024; 14(11):518. https://doi.org/10.3390/bios14110518
Chicago/Turabian StyleFoladore, Alessandro, Simone Lattanzio, Elisabetta Lombardi, Cristina Durante, Ekaterina Baryshnikova, Martina Anguissola, Lidia Rota, Marco Ranucci, and Mario Mazzucato. 2024. "A New Shear-Stress-Based Point-of-Care Technology for Evaluation of the Hemostatic Pattern in Whole Blood" Biosensors 14, no. 11: 518. https://doi.org/10.3390/bios14110518
APA StyleFoladore, A., Lattanzio, S., Lombardi, E., Durante, C., Baryshnikova, E., Anguissola, M., Rota, L., Ranucci, M., & Mazzucato, M. (2024). A New Shear-Stress-Based Point-of-Care Technology for Evaluation of the Hemostatic Pattern in Whole Blood. Biosensors, 14(11), 518. https://doi.org/10.3390/bios14110518