Rapid Microfluidic Biosensor for Point-of-Care Determination of Rheumatoid Arthritis via Anti-Cyclic Citrullinated Peptide Antibody Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Fabrication Details
2.3. Optical Analysis System and Microchip Reaction Process
2.4. Experimental Details
3. Results and Discussions
3.1. Specificity of Detection Process
3.2. Parameter Optimization of Anti-CCP Ab Immunoassay
3.3. Calibration Curve
3.4. Detection Results for Samples with Unknown Anti-CCP Ab Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.N.; Dai, L.; Li, Y.H.; Guo, X.Y.; Zhang, X.M. Meta-analysis: Compared with anti-CCP and rheumatoid factor, could anti-MCV be the next biomarker in the rheumatoid arthritis classification criteria? Clin. Chem. Lab. Med. 2019, 57, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Huang, M.; Chen, W.; Li, Y.; Xu, L.; Zhou, F.; Zhang, H.; Chen, W. Oxygen supplementation liposomes for rheumatoid arthritis treatment via synergistic phototherapy and repolarization of M1-to-M2 macrophages. Chem. Eng. J. 2022, 459, 141484. [Google Scholar] [CrossRef]
- Smith, J.; Johnson, L. Importance of Early Detection in Rheumatoid Arthritis. Innovation 2022, 3, 100331. [Google Scholar]
- Brown, A.; Davis, M. Advances in RA Biomarker Diagnostics. Innovation 2022, 3, 100259. [Google Scholar]
- Zhang, M.; Zhang, S.; Tang, Y.; Zhuang, X.; Yang, X.; Guo, Y. Targeted therapy for autoimmune diseases based on multifunctional frame nucleic acid system: Blocking TNF-α-NF-κB signaling and mediating macrophage polarization. Chem. Eng. J. 2023, 454, 140399. [Google Scholar] [CrossRef]
- Schellekens, G.A.; Visser, H.; de Jong, B.A.; van den Hoogen, F.H.; Hazes, J.M.; van de Putte, L.B.; van Venrooij, W.J. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum. 2000, 43, 155–163. [Google Scholar] [CrossRef]
- Guerrero, S.; Castillo, J.; Fuentes, M.; Cruz, M.; Marican, A.; Meza, N.; Cortez, C.; Gabler, C. Electrochemical biosensor for the simultaneous determination of rheumatoid factor and anti-cyclic citrullinated peptide antibodies in human serum. Analyst 2020, 145, 4680–4687. [Google Scholar] [CrossRef]
- Gao, S.; Huang, M.; Chen, W.; Zhang, F.; Zhang, H.; Tan, C.; Zhang, J. A biolayer interferometry-based, aptamer–antibody receptor pair biosensor for real-time, sensitive, and specific detection of the disease biomarker TNF-α. Chem. Eng. J. 2022, 433, 133268. [Google Scholar] [CrossRef]
- Lin, C.Y.; Yu, S.Y.; Lee, G.J.; Chen, Y.J.; Chen, Y.C.; Huang, C.H. Peptide-based electrochemical sensor with nanogold enhancement for detecting rheumatoid arthritis. Talanta 2022, 236, 122886. [Google Scholar] [CrossRef]
- Chen, H.-M.; Tsai, Y.-H.; Hsu, C.-Y.; Wang, Y.-Y.; Hsieh, C.-E.; Chen, J.-H.; Chang, Y.-S.; Lin, C.-Y. Peptide-Coated Bacteriorhodopsin-Based Photoelectric Biosensor for Detecting Rheumatoid Arthritis. Biosensors 2023, 13, 929. [Google Scholar] [CrossRef]
- Fu, L.; Zou, Y.; Li, Y.; Zhou, P.; Zhang, W.; Ma, Z. A modified quick PETIA for detecting anti-CCP antibodies in human serum. Anal. Methods 2015, 7, 3134–3140. [Google Scholar] [CrossRef]
- Ramos, K.C.; Macías, M.D.P.C. Microdevice immunoassay with conjugated magnetic nanoparticles for rapid anti-cyclic citrullinated peptide (anti-CCP) detection. Talanta 2021, 224, 121801. [Google Scholar] [CrossRef]
- Dutta, P.; Nam, H.W.; Kim, K.S.; Min, J. Combining portable solar-powered centrifuge to nanoplasmonic sensing chip with smartphone reader for rheumatoid arthritis detection. Chem. Eng. J. 2022, 434, 133864. [Google Scholar] [CrossRef]
- Mumtaz, Z.; Rashid, Z.; Ali, A.; Arif, A.; Ameen, F.; AlTami, M.S.; Yousaf, M.Z. Prospects of microfluidic technology in nucleic acid detection approaches. Biosensors 2023, 13, 584. [Google Scholar] [CrossRef]
- Huang, R.; Quan, J.; Su, B.; Cai, C.; Cai, S.; Chen, Y.; Mou, Z.; Zhou, P.; Ma, D.; Cui, X. A two-step competition assay for visual, sensitive and quantitative C-reactive protein detection in low-cost microfluidic particle accumulators. Sens. Actuators B Chem. 2022, 359, 131583. [Google Scholar] [CrossRef]
- Qian, M.; Zeng, Y.; Li, M.; Gao, Q.; Zhang, C.; Qi, H. Electrogenerated Chemiluminescence Biosensor for Quantization of Matrix Metalloproteinase-3 in Serum via Target-Induced Cleavage of Oligopeptide. Biosensors 2024, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Bakuova, N.; Toktarkan, S.; Dyussembinov, D.; Azhibek, D.; Rakhymzhanov, A.; Kostas, K.; Kulsharova, G. Design, simulation, and evaluation of polymer-based microfluidic devices via computational fluid dynamics and cell culture “on-chip”. Biosensors 2023, 13, 754. [Google Scholar] [CrossRef]
- Li, F.; You, M.; Li, S.; Hu, J.; Liu, C.; Gong, Y.; Yang, H.; Xu, F. based point-of-care immunoassays: Recent advances and emerging trends. Biotechnol. Adv. 2020, 39, 107442. [Google Scholar] [CrossRef]
- Flora, F.C.; Relvas, S.B.; Silva, F.A.; Freire, M.G.; Chu, V.; Conde, J.P. Combined Use of Ionic Liquid-Based Aqueous Biphasic Systems and Microfluidic Devices for the Detection of Prostate-Specific Antigen. Biosensors 2023, 13, 334. [Google Scholar] [CrossRef]
- Bartosh, A.V.; Sotnikov, D.V.; Zherdev, A.V.; Dzantiev, B.B. Handling Detection Limits of Multiplex Lateral Flow Immunoassay by Choosing the Order of Binding Zones. Micromachines 2023, 14, 333. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Yang, J.; Van Nguyen, H.; Poo, H.; Seo, T.S. Development of a high-throughput centrifugal microsystem for enzyme-linked immunosorbent assay to detect SARS-CoV-2. Chem. Eng. J. 2023, 472, 144808. [Google Scholar] [CrossRef]
- Ko, C.H.; Tseng, C.C.; Lu, S.Y.; Lee, C.C.; Kim, S.; Fu, L.M. Handheld microfluidic multiple detection device for concurrent blood urea nitrogen and creatinine ratio determination using colorimetric approach. Sens. Actuators B Chem. 2025, 422, 136585. [Google Scholar] [CrossRef]
- Chen, S.J.; Lu, S.Y.; Tseng, C.C.; Huang, K.H.; Chen, T.L.; Fu, L.M. Rapid Microfluidic Immuno-Biosensor Detection System for the Point-of-Care Determination of High-Sensitivity Urinary C-Reactive Protein. Biosensors 2024, 14, 283. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Liu, C.C.; Huang, K.H.; Fu, L.M. Finger Pump Mcrofluidic Detection System for Methylparaben Detection in Foods. Food Chem. 2023, 407, 135118. [Google Scholar] [CrossRef] [PubMed]
- Hiniduma, K.; Bhalerao, K.S.; De Silva, P.I.T.; Chen, T.; Rusling, J.F. Design and Fabrication of a 3D-Printed Microfluidic Immunoarray for Ultrasensitive Multiplexed Protein Detection. Micromachines 2023, 14, 2187. [Google Scholar] [CrossRef]
- Akhtar, A.S.; Soares, R.R.; Pinto, I.F.; Russom, A. A portable and low-cost centrifugal microfluidic platform for multiplexed colorimetric detection of protein biomarkers. Anal. Chim. Acta 2023, 1245, 340823. [Google Scholar] [CrossRef]
- Khan, M.; Zhao, B.; Wu, W.; Zhao, M.; Bi, Y.; Hu, Q. Distance-based microfluidic assays for instrument-free visual point-of-care testing. TrAC Trends Anal. Chem. 2023, 162, 117029. [Google Scholar] [CrossRef]
- Chen, F.; Hu, Q.; Li, H.; Xie, Y.; Xiu, L.; Zhang, Y.; Guo, X.; Yin, K. Multiplex detection of infectious diseases on microfluidic platforms. Biosensors 2023, 13, 410. [Google Scholar] [CrossRef]
- Balzer, A.H.; Whitehurst, C.B. An analysis of the biotin–(strept) avidin system in immunoassays: Interference and mitigation strategies. Curr. Issues Mol. Biol. 2023, 45, 8733–8754. [Google Scholar] [CrossRef]
- Sanders, A.; Gama, R.; Ashby, H.; Mohammed, P. Biotin immunoassay interference: A UK-based prevalence study. Ann. Clin. Biochem. 2021, 58, 66–69. [Google Scholar] [CrossRef]
- Wang, X.M.; Li, S.; Li, L.H.; Song, J.X.; Lu, Y.H.; Zhou, Z.W.; Zhang, L. Triple quantitative detection of three inflammatory biomarkers with a biotin-streptavidin-phycoerythrin based lateral flow immunoassay. Anal. Biochem. 2022, 657, 114915. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Wang, Y.; Wang, D.; Yang, Y.; Chang, J.; Sun, H.; He, J. Streptavidin-biotin system-mediated immobilization of a bivalent nanobody onto magnetosomes for separation and analysis of 3-phenoxybenzoic acid in urine. Anal. Methods 2024, 16, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, T.; Wang, Z.; Xu, W.; Ding, S.; Ge, J. DNA-directed immobilisation of glycomimetics for glycoarrays application: Comparison with covalent immobilisation, and development of an on-chip IC50 measurement assay. Biosens. Bioelectron. 2009, 24, 2515–2521. [Google Scholar] [CrossRef]
- Berth, M.; Willaert, S.; De Ridder, C. Anti-streptavidin IgG antibody interference in anti-cyclic citrullinated peptide (CCP) IgG antibody assays is a rare but important cause of false-positive anti-CCP results. Clin. Chem. Lab. Med. 2018, 56, 1263–1268. [Google Scholar] [CrossRef]
- Arias-Alpízar, K.; Sánchez-Cano, A.; Prat-Trunas, J.; Sulleiro, E.; Bosch-Nicolau, P.; Salvador, F.; Oliveira, I.; Molina, I.; Sánchez-Montalvá, A.; Baldrich, E. Magnetic Bead Handling Using a Paper-Based Device for Quantitative Point-of-Care Testing. Biosensors 2022, 12, 680. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Flórez, F.; Rodríguez, A.; Cervera, E.; De Ávila, M.; Sanjuán, M.; Villalba, P.J. Microfluidic Paper-Based Blood Plasma Separation Device as a Potential Tool for Timely Detection of Protein Biomarkers. Micromachines 2022, 13, 706. [Google Scholar] [CrossRef] [PubMed]
- Abbas, N.; Song, S.; Chang, M.-S.; Chun, M.-S. Point-of-Care Diagnostic Devices for Detection of Escherichia coli O157:H7 Using Microfluidic Systems: A Focused Review. Biosensors 2023, 13, 741. [Google Scholar] [CrossRef]
- Mitrogiannopoulou, A.-M.; Tselepi, V.; Ellinas, K. Polymeric and Paper-Based Lab-on-a-Chip Devices in Food Safety: A Review. Micromachines 2023, 14, 986. [Google Scholar] [CrossRef]
- Mishra, R.; Alam, R.; McAuley, D.; Bharaj, T.; Chung, D.; Kinahan, D.J.; Nwankire, C.; Anderson, K.S.; Ducrée, J. Solvent Selective Membrane Routing and Microfluidic Architecture Towards Centrifugal Automation of Customisable Bead Based Immunoassays. Sens. Actuators B Chem. 2022, 356, 131305. [Google Scholar] [CrossRef]
- Neumair, J.; Kröger, M.; Stütz, E.; Jerin, C.; Chaker, A.M.; Schmidt-Weber, C.B.; Seidel, M. Flow-Based CL-SMIA for the Quantification of Protein Biomarkers from Nasal Secretions in Comparison with Sandwich ELISA. Biosensors 2023, 13, 670. [Google Scholar] [CrossRef]
- Boozer, C.; Ladd, J.; Chen, S.; Jiang, S. DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Anal. Chem. 2006, 78, 1515–1519. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.F.; Ju, W.J.; Wu, M.C.; Tai, C.H.; Tsai, C.H.; Fu, L.M. Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid. Nanofluid. 2010, 9, 1125–1133. [Google Scholar] [CrossRef]
- Wu, Y.T.; Yang, C.E.; Ko, C.H.; Wang, Y.N.; Liu, C.C.; Fu, L.M. Microfluidic detection platform with integrated micro-spectrometer system. Chem. Eng. J. 2020, 393, 124700. [Google Scholar] [CrossRef]
- Rönnelid, J.; Turesson, C.; Kastbom, A. Autoantibodies in rheumatoid arthritis–laboratory and clinical perspectives. Front. Immunol. 2021, 12, 685312. [Google Scholar] [CrossRef] [PubMed]
- Khudhair, H.A.A. A study of the roles of some immunological biomarkers in the diagnosis of rheumatoid arthritis. J. Med. Life 2023, 16, 1194. [Google Scholar] [CrossRef]
- Ma, J.; Li, D.; Sun, B.; Hou, X.; Zhang-Peng, X.; Li, W.; Zhang, Y.; Hu, F.; Shi, X. Label-free Electrochemical Immunosensor for Sensitive Detection of Rheumatoid Arthritis Biomarker Anti-CCP-ab. Electroanalysis 2022, 34, 761–771. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Cho, S. Electrochemical immunosensor for the early detection of rheumatoid arthritis biomarker: Anti-cyclic citrullinated peptide antibody in human serum based on avidin-biotin system. Sensors 2020, 21, 124. [Google Scholar] [CrossRef]
- Wu, T.H.; Tsai, Y.C.; Kuo, F.C.; Lee, M.S.; Hu, C.C.; Lee, G.B. A microfluidic platform for detection and quantification of two biomarkers for rheumatoid arthritis. Sens. Actuators B Chem. 2023, 383, 133587. [Google Scholar] [CrossRef]
Method | Analysis Time | Device Price | Detection Range | LOD | Instrument Type | Ref. |
---|---|---|---|---|---|---|
Electrochemical | >2 h | High | 10–1000 IU/mL | 2.5 IU/mL | Benchtop | [7] |
Electrochemical | >60 min | High | 1/2–1/64 serum dilution | N/A | Benchtop | [9] |
Photoelectric | >2 h | High | 1/100 serum dilution | N/A | Benchtop | [10] |
Particle-enhanced turbidimetric immunoassay (PETIA) | >3 h | High | 13–430 U/mL | 12 U/mL | Benchtop | [11] |
Magnetic particle | 12 min | High | 0.7–2000 U/mL | 0.7 U/mL | Benchtop | [12] |
Nanoplasmonic sensing | 12 min | Low | N/A | N/A | Handheld | [13] |
Electrochemical | 2 h | High | 0.125–2000 pg/mL | 0.0125 pg/mL | Benchtop | [46] |
Electrochemical | 40 min | High | 1–800 IU/mL | 0.82 IU/mL | Benchtop | [47] |
Magnetic particle | 55 min | High | 0.2–59 U/mL | N/A | Benchtop | [48] |
Proposed method | <70 min | Low | 1.57–100 ng/mL | 1.57 ng/mL | Handheld | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, W.-Y.; Chen, T.-L.; Wang, H.-M.; Fu, L.-M. Rapid Microfluidic Biosensor for Point-of-Care Determination of Rheumatoid Arthritis via Anti-Cyclic Citrullinated Peptide Antibody Detection. Biosensors 2024, 14, 545. https://doi.org/10.3390/bios14110545
Tai W-Y, Chen T-L, Wang H-M, Fu L-M. Rapid Microfluidic Biosensor for Point-of-Care Determination of Rheumatoid Arthritis via Anti-Cyclic Citrullinated Peptide Antibody Detection. Biosensors. 2024; 14(11):545. https://doi.org/10.3390/bios14110545
Chicago/Turabian StyleTai, Wei-Yu, To-Lin Chen, Hsing-Meng Wang, and Lung-Ming Fu. 2024. "Rapid Microfluidic Biosensor for Point-of-Care Determination of Rheumatoid Arthritis via Anti-Cyclic Citrullinated Peptide Antibody Detection" Biosensors 14, no. 11: 545. https://doi.org/10.3390/bios14110545
APA StyleTai, W. -Y., Chen, T. -L., Wang, H. -M., & Fu, L. -M. (2024). Rapid Microfluidic Biosensor for Point-of-Care Determination of Rheumatoid Arthritis via Anti-Cyclic Citrullinated Peptide Antibody Detection. Biosensors, 14(11), 545. https://doi.org/10.3390/bios14110545