Biomimetic Plant-Root-Inspired Robotic Sensor System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrochemical Sensor Array Design, Fabrication, and Materials
2.2. Electronics and Control
2.3. Sensor Characterization in Solutions and Gels
2.4. Artificial Chemotropism Sensing Experimental Protocol
- Configure the root algorithm.
- Fix a vertical starting position for the root (gravitropism with no chemical stimuli applied).
- Apply the gel with a specific concentration on the three arrays of sensors in different directions.
- Remove offsets by means of a software interface after some minutes.
- Apply a different gel condition on sensor #2.
- After stabilization, apply the gel condition used in step 5 on sensor #1.
- After stabilization, apply the gel condition used in step 5 on sensor #3.
3. Results and Discussion
3.1. Sensor Optimization and Characterization
3.2. Sensor Integration in the Robotic Tip
3.3. Characterization of Sensors’ Integration in the Robotic Root
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gilroy, S.; Masson, P. Plant Tropisms; James Blackwell Publishing: Norwich, UK, 2008. [Google Scholar]
- Amtmann, A.; Hammond, J.P.; Armengaud, P.; White, P.J. Nutrient Sensing and Signalling in Plants: Potassium and Phosphorus. Adv. Bot. Res. 2006, 43, 209–255. [Google Scholar]
- Ho, C.H.; Tsay, Y.F. Nitrate, Ammonium, and Potassium Sensing and Signaling. Curr. Opin. Plant Biol. 2010, 13, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.W. Plant Tropisms: And Other Growth Movements; Unwin Hyman Ltd.: London, UK, 1990. [Google Scholar]
- Schachtman, D.P.; Shin, R. Nutrient sensing and signaling: NPKS Annu. Rev. Plant Biol. 2007, 58, 47–69. [Google Scholar] [CrossRef] [PubMed]
- Foy, C.D. Limitations to Plant Root Growth. Adv. Soil. Sci. 1992, 19, 97–149. [Google Scholar]
- Tuteja, N.; Sopory, S.K. Chemical signaling under abiotic stress environment in plants. Plant Signal. Behav. 2008, 3, 525–536. [Google Scholar] [CrossRef]
- Miller, A.J.; Smith, S.J. Cytosolic nitrate ion homeostasis, could it have a role in sensing nitrogen status. Ann. Bot. 2008, 101, 485–489. [Google Scholar] [CrossRef]
- Abel, S. Phosphate sensing in root development. Curr. Opin. Plant Biol. 2011, 14, 303–309. [Google Scholar] [CrossRef]
- Radcliffe, S.A.; Miller, A.J.; Ratcliffe, R.G. Microelectrode and 133Cs nuclear magnetic resonance evidence for variable cytosolic and cytoplasmic nitrate pools in maize root tips. Plant Cell Environ. 2005, 28, 1379–1387. [Google Scholar] [CrossRef]
- Toyota, M.; Gilroy, S. Gravitropism and mechanical signaling in plants. Am. J. Bot. 2013, 100, 111–125. [Google Scholar] [CrossRef]
- LaDuc, T. Cover: Choosing the right gecko is a sticky business. Nature 2007, 449, 139. [Google Scholar] [CrossRef]
- Ruppert, F.; Badri-Spröwitz, A. Learning plastic matching of robot dynamics in closed-loop central pattern generators. Nat. Mach. Intell. 2022, 4, 652–660. [Google Scholar] [CrossRef]
- Song, L.; Gao, W.; Jiang, S.; Yang, Y.; Chu, W.; Cao, X.; Sun, B.; Cui, L.; Zhang, C.Y. One-Dimensional Covalent Organic Framework with Improved Charge Transfer for Enhanced Electrochemiluminescence. Nano Lett. 2024, 24, 6312–6319. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Yang, Y.; Jiang, S.; Cao, X.; Chu, W.; Chen, J.; Sun, B.; Ren, K.; Zhang, C.Y. Exogenous Co-Reactant-Free Electrochemiluminescent Biosensor for Ratiometric Measurement of α-Glucosidase Based on a ZIF-67-Regulated Hydrogen-Bonded Organic Framework. ACS Sens. 2024, 9, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Pérez, L.; Rodríguez, Í.; Rodríguez, N.; Usamentiaga, R.; García, D.F. Robot Guidance Using Machine Vision Techniques in Industrial Environments: A Comparative Review. Sensors 2016, 16, 335. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.Y.; Laws, S.; Baena, F.R. Six-Axis Force/Torque Sensors for Robotics Applications: A Review. IEEE Sens. J. 2021, 21, 27238–27251. [Google Scholar] [CrossRef]
- Kot, R. Review of Obstacle Detection Systems for Collision Avoidance of Autonomous Underwater Vehicles Tested in a Real Environment. Electronics 2022, 11, 3615. [Google Scholar] [CrossRef]
- Li, J.G.; Cao, M.L.; Meng, Q.H. Chemical Source Searching by Controlling a Wheeled Mobile Robot to Follow an Online Planned Route in Outdoor Field Environments. Sensors 2019, 19, 426. [Google Scholar] [CrossRef]
- Burgués, J.; Hernandez, V.; Lilienthal, A.; Marco, S. Gas distribution mapping and source localization using a 3D grid of metal oxide semiconductor sensors. Sens. Actuators B Chem. 2020, 304, 127309. [Google Scholar] [CrossRef]
- Grasso, F.W.; Consi, T.R.; Mountain, D.C.; Atema, J. Biomimetic robot lobster performs chemo-orientation in tubulence using a pair of spatially separated sensors: Progress and challenges. Robot. Auton. Syst. 2000, 30, 115–131. [Google Scholar] [CrossRef]
- Ciui, B.; Martin, A.; Mishra, R.K.; Nakagawa, T.; Dawkins, T.J.; Lyu, M.; Cristea, C.; Sandulescu, R.; Wang, J. Chemical Sensing at the Robot Fingertips: Toward Automated Taste Discrimination in Food Samples. ACS Sens. 2018, 3, 2375–2384. [Google Scholar] [CrossRef]
- Ravalli, A.; Rossi, C.; Marrazza, G. Bio-inspired fish robot based on chemical sensors. Sens. Actuators B Chem. 2017, 239, 325–329. [Google Scholar] [CrossRef]
- Russino, A.; Ascrizzi, A.; Popova, L.; Tonazzini, A.; Mancuso, S.; Mazzolai, B. A Novel Tracking Tool for Analysis of Plant Root Tip Movements. Bioinspiration Biomim. 2013, 8, 025004. [Google Scholar] [CrossRef] [PubMed]
- Novák, D.; Kuchařová, A.; Ovečka, M.; Komis, G.; Šamaj, J. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015, 6, 462. [Google Scholar]
- Sadeghi, A.; Mondini, A.; Del Dottore, E.; Mattoli, V.; Beccai, L.; Taccola, S.; Lucarotti, C.; Totaro, M.; Mazzolai, B. A plant-inspired kinematic model for growing robots. Bioinspir. Biomim. 2016, 12, 015001. [Google Scholar]
- Kim, H.J.; Sudduth, K.A.; Hummel, J.W. Sensing Nitrate and Potassium Ions in Soil Extracts Using Ion-Selective Electrodes. J. Biosyst. Eng. 2006, 31, 463–473. [Google Scholar]
- Kim, H.J.; Hummel, J.W.; Birrell, S.J. Evaluation of nitrate and potassium ion-selective membranes for soil macronutrient sensing. Trans. ASABE 2006, 49, 597. [Google Scholar] [CrossRef]
- Kim, H.J.; Hummel, J.W.; Sudduth, K.A.; Motavalli, P.P. Simultaneous analysis of soil macronutrients using ion-selective electrodes. Soil. Sci. Soc. Am. J. 2007, 71, 1867–1877. [Google Scholar] [CrossRef]
- Tymecki, Ł.; Zwierkowska, E.; Koncki, R. Screen-printed reference electrodes for potentiometric measurements. Anal. Chim. Acta 2004, 526, 3–11. [Google Scholar] [CrossRef]
- Mazzolai, B.; Beccai, L.; Mattoli, V. Plants as model in biomimetics and biorobotics: New perspectives. Front. Bioeng. Biotechnol. 2014, 2, 2. [Google Scholar] [CrossRef]
Sample | Log [K+] (M) | pH |
---|---|---|
G1 | −3 | 8 |
G2 | −2 | 8 |
G3 | −1 | 8 |
G4 | −3 | 7 |
G5 | −2 | 7 |
G6 | −1 | 7 |
G7 | −3 | 6 |
G8 | −2 | 6 |
G9 | −1 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvira, M.; Mondini, A.; Puleo, G.L.; Tahirbegi, I.B.; Beccai, L.; Sadeghi, A.; Mazzolai, B.; Mir, M.; Samitier, J. Biomimetic Plant-Root-Inspired Robotic Sensor System. Biosensors 2024, 14, 565. https://doi.org/10.3390/bios14120565
Alvira M, Mondini A, Puleo GL, Tahirbegi IB, Beccai L, Sadeghi A, Mazzolai B, Mir M, Samitier J. Biomimetic Plant-Root-Inspired Robotic Sensor System. Biosensors. 2024; 14(12):565. https://doi.org/10.3390/bios14120565
Chicago/Turabian StyleAlvira, Margarita, Alessio Mondini, Gian Luigi Puleo, Islam Bogachan Tahirbegi, Lucia Beccai, Ali Sadeghi, Barbara Mazzolai, Mònica Mir, and Josep Samitier. 2024. "Biomimetic Plant-Root-Inspired Robotic Sensor System" Biosensors 14, no. 12: 565. https://doi.org/10.3390/bios14120565
APA StyleAlvira, M., Mondini, A., Puleo, G. L., Tahirbegi, I. B., Beccai, L., Sadeghi, A., Mazzolai, B., Mir, M., & Samitier, J. (2024). Biomimetic Plant-Root-Inspired Robotic Sensor System. Biosensors, 14(12), 565. https://doi.org/10.3390/bios14120565