Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Cyclic Voltammetry
2.2.2. MFC Measurements
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharif, A.; Mehmood, U.; Tiwari, S. A Step towards Sustainable Development: Role of Green Energy and Environmental Innovation. Environ. Dev. Sustain. 2024, 26, 9603–9624. [Google Scholar] [CrossRef]
- Jones, E.R.; Van Vliet, M.T.H.; Qadir, M.; Bierkens, M.F.P. Country-Level and Gridded Estimates of Wastewater Production, Collection, Treatment and Reuse. Earth Syst. Sci. Data 2021, 13, 237–254. [Google Scholar] [CrossRef]
- Hamedani, E.A.; Abasalt, A.; Talebi, S. Application of Microbial Fuel Cells in Wastewater Treatment and Green Energy Production: A Comprehensive Review of Technology Fundamentals and Challenges. Fuel 2024, 370, 131855. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.J.; De Los Ríos, A.P.; Salar-García, M.J.; Ortiz-Martínez, V.M.; Lozano-Blanco, L.J.; Godínez, C.; Tomás-Alonso, F.; Quesada-Medina, J. Recent Progress and Perspectives in Microbial Fuel Cells for Bioenergy Generation and Wastewater Treatment. Fuel Process. Technol. 2015, 138, 284–297. [Google Scholar] [CrossRef]
- Boas, J.V.; Oliveira, V.B.; Simões, M.; Pinto, A.M.F.R. Review on Microbial Fuel Cells Applications, Developments and Costs. J Environ. Manag. 2022, 307, 114525. [Google Scholar] [CrossRef]
- Kižys, K.; Zinovičius, A.; Jakštys, B.; Bružaitė, I.; Balčiūnas, E.; Petrulevičienė, M.; Ramanavičius, A.; Morkvėnaitė-Vilkončienė, I. Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles. Biosensors 2023, 13, 221. [Google Scholar] [CrossRef]
- Choi, S. Microscale Microbial Fuel Cells: Advances and Challenges. Biosens. Bioelectron. 2015, 69, 8–25. [Google Scholar] [CrossRef]
- Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Dzedzickis, A.; Ramanavicius, A. Yeast-Based Microbial Biofuel Cell Mediated by 9,10-Phenantrenequinone. Electrochim. Acta 2021, 373, 137918. [Google Scholar] [CrossRef]
- Sekrecka-Belniak, A.; Toczyłowska-Maminska, R. Fungi-Based Microbial Fuel Cells. Energies 2018, 11, 2827. [Google Scholar] [CrossRef]
- Haslett, N.D.; Rawson, F.J.; Barriëre, F.; Kunze, G.; Pasco, N.; Gooneratne, R.; Baronian, K.H.R. Characterisation of Yeast Microbial Fuel Cell with the Yeast Arxula Adeninivorans as the Biocatalyst. Biosens. Bioelectron. 2011, 26, 3742–3747. [Google Scholar] [CrossRef]
- Ganguli, R.; Dunn, B.S. Kinetics of Anode Reactions for a Yeast-Catalysed Microbial Fuel Cell. Fuel Cells 2009, 9, 44–52. [Google Scholar] [CrossRef]
- Andriukonis, E.; Stirke, A.; Garbaras, A.; Mikoliunaite, L.; Ramanaviciene, A.; Remeikis, V.; Thornton, B.; Ramanavicius, A. Yeast-Assisted Synthesis of Polypyrrole: Quantification and Influence on the Mechanical Properties of the Cell Wall. Colloids Surf. B Biointerfaces 2018, 164, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Ramanavicius, A.; Andriukonis, E.; Stirke, A.; Mikoliunaite, L.; Balevicius, Z.; Ramanaviciene, A. Synthesis of Polypyrrole within the Cell Wall of Yeast by Redox-Cycling of [Fe(CN)6]3−/[Fe(CN)6]4−. Enzym. Microb. Technol. 2016, 83, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Ateh, D.D.; Navsaria, H.A.; Vadgama, P. Polypyrrole-Based Conducting Polymers and Interactions with Biological Tissues. J. R. Soc. Interface 2006, 3, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gu, X.; Yuan, C.; Chen, S.; Zhang, P.; Zhang, T.; Yao, J.; Chen, F.; Chen, G. Evaluation of Biocompatibility of Polypyrrole In Vitro and In Vivo. J. Biomed. Mater. Res. A 2004, 68, 411–422. [Google Scholar] [CrossRef]
- Santa, A.D.; Mazzoldi, A.; Tonci, C.; De Rossi, D. Passive Mechanical Properties of Polypyrrole Films: A Continuum, Poroelastic Model. Mater. Sci. Eng. C 1997, 5, 101–109. [Google Scholar] [CrossRef]
- Kumar, R.; Raizada, P.; Ahamad, T.; Alshehri, S.M.; Van Le, Q.; Alomar, T.S.; Nguyen, V.H.; Selvasembian, R.; Thakur, S.; Nguyen, D.C.; et al. Polypyrrole-Based Nanomaterials: A Novel Strategy for Reducing Toxic Chemicals and Others Related to Environmental Sustainability Applications. Chemosphere 2022, 303, 134993. [Google Scholar] [CrossRef]
- Yang, Y.; Qi, P.; Ding, Y.; Maitz, M.F.; Yang, Z.; Tu, Q.; Xiong, K.; Leng, Y.; Huang, N. A Biocompatible and Functional Adhesive Amine-Rich Coating Based on Dopamine Polymerization. J. Mater. Chem. B 2015, 3, 72–81. [Google Scholar] [CrossRef]
- Groll, J.; Singh, S.; Albrecht, K.; Moeller, M. Biocompatible and Degradable Nanogels via Oxidation Reactions of Synthetic Thiomers in Inverse Miniemulsion. J. Polym. Sci. A Polym. Chem. 2009, 47, 5543–5549. [Google Scholar] [CrossRef]
- Namazi, H.; Baghershiroudi, M.; Kabiri, R. Preparation of Electrically Conductive Biocompatible Nanocomposites of Natural Polymer Nanocrystals With Polyaniline via In Situ Chemical Oxidative Polymerization. Polym. Compos. 2017, 38, E49–E56. [Google Scholar] [CrossRef]
- Severt, S.Y.; Ostrovsky-Snider, N.A.; Leger, J.M.; Murphy, A.R. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization. ACS Appl. Mater. Interfaces 2015, 7, 25281–25288. [Google Scholar] [CrossRef] [PubMed]
- Sherman, H.G.; Hicks, J.M.; Jain, A.; Titman, J.J.; Alexander, C.; Stolnik, S.; Rawson, F.J. Mammalian-Cell-Driven Polymerisation of Pyrrole. ChemBioChem 2019, 20, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Lunn, D.J.; Pusuluri, A.; Yoo, J.I.; O’Malley, M.A.; Mitragotri, S.; Soh, H.T.; Hawker, C.J. Engineering Live Cell Surfaces with Functional Polymers via Cytocompatible Controlled Radical Polymerization. Nat. Chem. 2017, 9, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.R.; Gurnani, P.; Hill, P.J.; Alexander, C.; Rawson, F.J. Iron-Catalysed Radical Polymerisation by Living Bacteria. Angew. Chem. 2020, 132, 4780–4785. [Google Scholar] [CrossRef]
- Song, L.; Zhao, J.; Yang, H.; Jin, J.; Li, X.; Stagnaro, P.; Yin, J. Biocompatibility of Polypropylene Non-Woven Fabric Membrane via UV-Induced Graft Polymerization of 2-Acrylamido-2-Methylpropane Sulfonic Acid. Appl. Surf. Sci. 2011, 258, 425–430. [Google Scholar] [CrossRef]
- Müller, D.; Rambo, C.; Ecouvreux, D.; Porto, L.; Barra, G. Chemical in Situ Polymerization of Polypyrrole on Bacterial Cellulose Nanofibers. Synth. Met. 2011, 161, 106–111. [Google Scholar] [CrossRef]
- Serra Moreno, J.; Panero, S.; Materazzi, S.; Martinelli, A.; Sabbieti, M.G.; Agas, D.; Materazzi, G. Polypyrrole-Polysaccharide Thin Films Characteristics: Electrosynthesis and Biological Properties. J. Biomed. Mater. Res. A 2009, 88, 832–840. [Google Scholar] [CrossRef]
- Vaitkuviene, A.; Kaseta, V.; Voronovic, J.; Ramanauskaite, G.; Biziuleviciene, G.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of Cytotoxicity of Polypyrrole Nanoparticles Synthesized by Oxidative Polymerization. J. Hazard. Mater. 2013, 250–251, 167–174. [Google Scholar] [CrossRef]
- Zinovicius, A.; Rozene, J.; Merkelis, T.; Bruzaitė, I.; Ramanavicius, A.; Morkvenaite-Vilkonciene, I. Evaluation of a Yeast–Polypyrrole Biocomposite Used in Microbial Fuel Cells. Sensors 2022, 22, 327. [Google Scholar] [CrossRef]
- Jouhten, P.; Ponomarova, O.; Gonzalez, R.; Patil, K.R. Saccharomyces Cerevisiae Metabolism in Ecological Context. FEMS Yeast Res. 2016, 16, fow080. [Google Scholar] [CrossRef]
- Raghavulu, S.V.; Goud, R.K.; Sarma, P.N.; Mohan, S.V. Saccharomyces Cerevisiae as Anodic Biocatalyst for Power Generation in Biofuel Cell: Influence of Redox Condition and Substrate Load. Bioresour. Technol. 2011, 102, 2751–2757. [Google Scholar] [CrossRef] [PubMed]
- Murakami, C.; Kaeberlein, M. Quantifying Yeast Chronological Life Span by Outgrowth of Aged Cells. J. Vis. Exp. 2009, 3–9, 1156. [Google Scholar] [CrossRef]
- Nasheuer, H.P.; Smith, R.; Bauerschmidt, C.; Grosse, F.; Weisshart, K. Initiation of Eukaryotic DNA Replication: Regulation and Mechanisms. Prog. Nucleic Acid Res. Mol. Biol. 2002, 72, 41–94. [Google Scholar] [CrossRef] [PubMed]
- Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Zinovicius, A.; Ramanavicius, A. Baker’s Yeast-Based Microbial Fuel Cell Mediated by 2-Methyl-1,4-Naphthoquinone. Membranes 2021, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Ramanavicius, A. 9,10-Phenanthrenequinone as a Redox Mediator for the Imaging of Yeast Cells by Scanning Electrochemical Microscopy. Sens. Actuators B Chem. 2016, 228, 200–206. [Google Scholar] [CrossRef]
- De, M.; Ghosh, P.S.; Rotello, V.M. Applications of Nanoparticles in Biology. Adv. Mater. 2008, 20, 4225–4241. [Google Scholar] [CrossRef]
- Stark, W.J.; Stoessel, P.R.; Wohlleben, W.; Hafner, A. Industrial Applications of Nanoparticles. Chem. Soc. Rev. 2015, 44, 5793–5805. [Google Scholar] [CrossRef]
- Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 2006, 18, 319–326. [Google Scholar] [CrossRef]
- Willner, I.; Willner, B.; Katz, E. Biomolecule-Nanoparticle Hybrid Systems for Bioelectronic Applications. Bioelectrochemistry 2007, 70, 2–11. [Google Scholar] [CrossRef]
- Yang, Y.; Li, C.; Yin, L.; Liu, M.; Wang, Z.; Shu, Y.; Li, G. Enhanced Charge Transfer by Gold Nanoparticle at DNA Modified Electrode and Its Application to Label-Free DNA Detection. ACS Appl. Mater. Interfaces 2014, 6, 7579–7584. [Google Scholar] [CrossRef]
- Han, T.H.; Khan, M.M.; Kalathil, S.; Lee, J.; Cho, M.H. Simultaneous Enhancement of Methylene Blue Degradation and Power Generation in a Microbial Fuel Cell by Gold Nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 8174–8181. [Google Scholar] [CrossRef]
- Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-Dependent Cytotoxicity of Gold Nanoparticles. Small 2007, 3, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, A.; Malankowska, A.; Nowaczyk, G.; Grześkowiak, B.F.; Tuśnio, K.; Słomski, R.; Zaleska-Medynska, A.; Jurga, S. Size and Shape-Dependent Cytotoxicity Profile of Gold Nanoparticles for Biomedical Applications. J. Mater. Sci. Mater. Med. 2017, 28, 92. [Google Scholar] [CrossRef] [PubMed]
- Andriukonis, E.; Stirkė, A.; Mikoliunaite, L.; Balevicius, Z.; Ramanavičiene, A.; Ramanavičius, A. Pyrrole Bio-Polymerization Using Redox Mediator. Patent No. LT6239B, 11 January 2016. [Google Scholar]
- Duarte, K.D.Z.; Frattini, D.; Kwon, Y. High Performance Yeast-Based Microbial Fuel Cells by Surfactant-Mediated Gold Nanoparticles Grown atop a Carbon Felt Anode. Appl. Energy 2019, 256, 113912. [Google Scholar] [CrossRef]
- Hu, M.; Li, X.; Xiong, J.; Zeng, L.; Huang, Y.; Wu, Y.; Cao, G.; Li, W. Nano-Fe3C@PGC as a Novel Low-Cost Anode Electrocatalyst for Superior Performance Microbial Fuel Cells. Biosens. Bioelectron. 2019, 142, 111594. [Google Scholar] [CrossRef]
- Huang, L.; Li, X.; Ren, Y.; Wang, X. In-Situ Modified Carbon Cloth with Polyaniline/Graphene as Anode to Enhance Performance of Microbial Fuel Cell. Int. J. Hydrogen Energy 2016, 41, 11369–11379. [Google Scholar] [CrossRef]
- Christwardana, M.; Kwon, Y. Yeast and Carbon Nanotube Based Biocatalyst Developed by Synergetic Effects of Covalent Bonding and Hydrophobic Interaction for Performance Enhancement of Membraneless Microbial Fuel Cell. Bioresour. Technol. 2017, 225, 175–182. [Google Scholar] [CrossRef]
- Truong, D.H.; Dam, M.S.; Bujna, E.; Rezessy-Szabo, J.; Farkas, C.; Vi, V.N.H.; Csernus, O.; Nguyen, V.D.; Gathergood, N.; Friedrich, L.; et al. In Situ Fabrication of Electrically Conducting Bacterial Cellulose-Polyaniline-Titanium-Dioxide Composites with the Immobilization of Shewanella Xiamenensis and Its Application as Bioanode in Microbial Fuel Cell. Fuel 2021, 285, 119259. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, X.; Owens, G.; Brunetti, G.; Zhou, J.; Yong, X.; Xie, X.; Zhang, L.; Wei, P.; Jia, H. Anode Modification by Biogenic Gold Nanoparticles for the Improved Performance of Microbial Fuel Cells and Microbial Community Shift. Bioresour. Technol. 2018, 270, 11–19. [Google Scholar] [CrossRef]
- Duarte, K.D.Z.; Kwon, Y. Enhanced Extracellular Electron Transfer of Yeast-Based Microbial Fuel Cells via One Pot Substrate-Bound Growth Iron-Manganese Oxide Nanoflowers. J. Power Sources 2020, 474, 228496. [Google Scholar] [CrossRef]
- Pu, K.B.; Ma, Q.; Cai, W.F.; Chen, Q.Y.; Wang, Y.H.; Li, F.J. Polypyrrole Modified Stainless Steel as High Performance Anode of Microbial Fuel Cell. Biochem. Eng. J. 2018, 132, 255–261. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; An, L. Electricity Generation and Storage in Microbial Fuel Cells with Porous Polypyrrole-Base Composite Modified Carbon Brush Anodes. Renew. Energy 2020, 162, 2220–2226. [Google Scholar] [CrossRef]
- Hemdan, B.A.; El-Taweel, G.E.; Naha, S.; Goswami, P. Bacterial Community Structure of Electrogenic Biofilm Developed on Modified Graphite Anode in Microbial Fuel Cell. Sci. Rep. 2023, 13, 1255. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, S.; Plekhanova, Y.; Kashin, V.; Gotovtsev, P.; Signore, M.A.; Francioso, L.; Kolesov, V.; Reshetilov, A. Gluconobacter Oxydans-Based MFC with PEDOT:PSS/Graphene/Nafion Bioanode for Wastewater Treatment. Biosensors 2022, 12, 699. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, J.; Shetty, B.H.; Ganapathy, D.; Murugan, P.; Atchudan, R.; Umapathy, D.; Khosla, A.; Sundramoorthy, A.K. Thermally Expanded Graphite Incorporated with PEDOT:PSS Based Anode for Microbial Fuel Cells with High Bioelectricity Production. J. Electrochem. Soc. 2022, 169, 017515. [Google Scholar] [CrossRef]
- Salar-Garcia, M.J.; Montilla, F.; Quijada, C.; Morallon, E.; Ieropoulos, I. Improving the Power Performance of Urine-Fed Microbial Fuel Cells Using PEDOT-PSS Modified Anodes. Appl. Energy 2020, 278, 115528. [Google Scholar] [CrossRef]
- Shetty, B.H.; Sundramoorthy, A.K.; Annamalai, J.; Murugan, P.; Atchudan, R.; Arya, S.; Alothman, A.A.; Ouladsmane, M. Fabrication of High-Performance MgCoO2/PEDOT:PSS@Nickel Foam Anode for Bioelectricity Generation by Microbial Fuel Cells. J. Nanomater. 2022, 2022, 6358852. [Google Scholar] [CrossRef]
- Obileke, K.C.; Onyeaka, H.; Meyer, E.L.; Nwokolo, N. Microbial Fuel Cells, a Renewable Energy Technology for Bio-Electricity Generation: A Mini-Review. Electrochem. Commun. 2021, 125, 107003. [Google Scholar] [CrossRef]
- Fonseca, E.U.; Yang, W.; Wang, X.; Rossi, R.; Logan, B.E. Comparison of Different Chemical Treatments of Brush and Flat Carbon Electrodes to Improve Performance of Microbial Fuel Cells. Bioresour. Technol. 2021, 342, 125932. [Google Scholar] [CrossRef]
- Blatter, M.; Delabays, L.; Furrer, C.; Huguenin, G.; Cachelin, C.P.; Fischer, F. Stretched 1000-L Microbial Fuel Cell. J. Power Sources 2021, 483, 229130. [Google Scholar] [CrossRef]
Component | Initial Concentration | Mixture Concentration |
---|---|---|
Yeast | 1 g/mL | 0.2 g/mL (20%) |
Glucose | 1 M | 400 mM (40%) |
Potassium ferrocyanide (II) | 0.4 M | 80 mM (20%) |
PBS 1 | 0.1 M | 0.1 M |
Pyrrole | 98% | 50 mM/0.7% or 200 mM/2.8% |
Microbe/Anode Material | Modification | Substrate | Control PD (mW/m2) | Max. PD (mW/m2) | Ref. |
---|---|---|---|---|---|
Mixed culture/graphite | FeNP’s | Acetate | 997 | 1856 | [46] |
Mixed culture/carbon cloth | PANI-graphene | Acetate | 454 | 884 | [47] |
S. Cerevisiae C/glassy carbon | CNT’s | Glucose | 138 | 344 | [48] |
Shewanella xiamenensis/BC-PANI | TiO2 | Glucose | 137.4 | 179.4 | [49] |
S. Cerevisiae/carbon felt | AuNP-PEI | Glucose | 381 | 2771 | [45] |
Mixed culture/carbon cloth | BioAu-MWCNT | Glucose | 114.24 | 178.34 | [50] |
S. Cerevisiae/carbon felt | PEI-FeMnNP | Glucose | 380 | 5800 | [51] |
Mixed culture/stainless steel | PPy | Wastewater | 40.59 | 1190.94 | [52] |
Mixed culture/carbon brush | PPy-CMC-CNT | Acetate | 683 | 2970 | [53] |
S. Cerevisiae/graphite rod | PPy | Glucose | 38.8 | 47.12 | [29] |
Mixed culture/graphite plate | PANI | Potato powder/soybean powder | 91.5 | 256.4 | [54] |
Gluconobacter Oxydans/graphite rod | PEDOT:PSS-graphene-Nafion | Wastewater | - | 82 | [55] |
Mixed culture/carbon felt | PEDOT:PSS-TEG | Glucose | 0.8 | 68.7 | [56] |
Mixed culture/carbon veil | PEDOT:PSS | Urine | 0.4305 | 0.5351 | [57] |
Mixed culture/nickel foam | MgCoO2- PEDOT:PSS | Wastewater | 197.6 | 494 | [58] |
S. Cerevisiae/graphite rod | PPy-AuNP’s | Glucose Wastewater | 9.2 - | 61.1 179.2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kižys, K.; Pirštelis, D.; Morkvėnaitė-Vilkončienė, I. Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified Saccharomyces cerevisiae. Biosensors 2024, 14, 572. https://doi.org/10.3390/bios14120572
Kižys K, Pirštelis D, Morkvėnaitė-Vilkončienė I. Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified Saccharomyces cerevisiae. Biosensors. 2024; 14(12):572. https://doi.org/10.3390/bios14120572
Chicago/Turabian StyleKižys, Kasparas, Domas Pirštelis, and Inga Morkvėnaitė-Vilkončienė. 2024. "Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified Saccharomyces cerevisiae" Biosensors 14, no. 12: 572. https://doi.org/10.3390/bios14120572
APA StyleKižys, K., Pirštelis, D., & Morkvėnaitė-Vilkončienė, I. (2024). Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified Saccharomyces cerevisiae. Biosensors, 14(12), 572. https://doi.org/10.3390/bios14120572