Plant Biosensors Analysis for Monitoring Nectarine Water Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Orchard
2.2. Soil Measurements
2.3. Soil Water Deficit Protocols
- (a)
- Light water deficit: MAD at 10% (DOY, days of the year, 150–180).
- (b)
- Moderate water deficit: MAD at 50% (DOY 181–210).
- (c)
- Severe water deficit: MAD at 100%, means non-irrigation (DOY 211–245).
- (d)
- Full irrigation: MAD at 0% when Ψstem in plants reached −2.0 MPa (DOY 246–300).
2.4. Plant Measurements
2.5. Sensitivity Analysis
- Traditional method S = SI/CV [39]. The higher the S value, the higher the sensitivity.
- Corrected method S* = (SI-1)/CV [49]. S* = 0: indicates the absence of sensitivity to water deficits; S* > 1: indicates sensitivity to water deficits. If S* is <0, it indicates the presence of anomalous values for the plant indicator.
2.6. Experimental Design and Data Analysis
3. Results and Discussion
3.1. Agrometeorological Conditions and Water Applied
3.2. Soil-Based Water Status Indicators
3.3. Plant-Based Water Status Indicators
3.4. Study of Plant Water Status Indicators Sensitivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. J. Sens. Actuator Netw. 2024, 13, 39. [Google Scholar] [CrossRef]
- Carella, A.; Bulacio Fischer, P.T.; Massenti, R.; Lo Bianco, R. Continuous Plant-Based and Remote Sensing for Determination of Fruit Tree Water Status. Horticulturae 2024, 10, 516. [Google Scholar] [CrossRef]
- Vera, J.; Conejero, W.; Conesa, M.R.; Ruiz-Sánchez, M.C. Irrigation Factor approach based on soil water content: A nectarine orchard case study. Water 2019, 11, 589. [Google Scholar] [CrossRef]
- Xu, C.; Du, Y.; Zheng, W.; Liu, Y.; Li, T. Data Image Aggregation Technology of Traffic Wireless Sensor Network. Mob. Inform. Syst. 2022, 2022, 5020296. [Google Scholar] [CrossRef]
- Martínez-Gimeno, M.A.; Jimenez-Bello, M.; Lidón, A.; Manzano, J.; Badal, E.; Pérez-Pérez, J.G.; Bonet, L.; Intrigliolo, D.S.; Esteban, A. Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring. Agric. Water Manag. 2020, 235, 106151. [Google Scholar] [CrossRef]
- Vories, E.; Sudduth, K. Determining sensor-based field capacity for irrigation scheduling. Agric. Water Manag. 2021, 250, 106860. [Google Scholar] [CrossRef]
- Casadesús, J.; Mata, M.; Marsal, J.; Girona, J. A general algorithm for automated scheduling of drip irrigation in tree crops. Comp. Electron. Agric. 2012, 83, 11–20. [Google Scholar] [CrossRef]
- Millán, S.; Casadesús, J.; Campillo, C.; Moñino, M.J.; Prieto, M.H. Using soil moisture sensors for automated irrigation scheduling in a plum crop. Water 2019, 11, 2061. [Google Scholar] [CrossRef]
- Domínguez-Niño, J.; Oliver-Manera, J.; Girona, J.; Casadesús, J. Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors. Agric. Water Manag. 2020, 228, e105880. [Google Scholar] [CrossRef]
- Miller, G.A.; Farahani, H.J.; Hassell, R.L.; Khalilian, A.; Adelberg, J.W.; Wells, C.E. Field evaluation and performance of capacitance probes for automated irrigation of watermelons. Agric. Water Manag. 2014, 131, 124–134. [Google Scholar] [CrossRef]
- Osroosh, Y.; Peters, R.T.; Campbell, C.S.; Zhang, Q. Comparison of irrigation automation algorithms for drip-irrigated apple trees. Comp. Electron. Agric. 2016, 128, 87–99. [Google Scholar] [CrossRef]
- Merriam, J.L. A management control concept for determining the economical depth and frequency of irrigation. Trans. ASAE 1966, 9, 492–498. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, J.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; Volume 56, p. 300. [Google Scholar]
- Conesa, M.R.; Conejero, W.; Vera, J.; Ramírez-Cuesta, J.M.; Ruiz-Sánchez, M.C. Terrestrial and remote indexes to assess moderate deficit irrigation in early-maturing nectarine trees. Agronomy 2019, 9, 630. [Google Scholar] [CrossRef]
- Conesa, M.R.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. Assessment of trunk microtensiometer as a novel biosensor to continuously monitor plant water status in nectarine trees. Front. Plant Sci. 2023, 14, 1123045. [Google Scholar] [CrossRef] [PubMed]
- Conesa, M.R.; Vera, J.; Conejero, W.; Hernández-Santana, V.; Ruiz-Sánchez, M.C. Trunk dielectric permittivity correlates with irrigation based on soil water content in fruit trees. Smart Agric. Technol. 2024, 7, 100428. [Google Scholar] [CrossRef]
- Noun, G.; Lo Cascio, M.; Spano, D.; Marras, S.; Sirca, C. Plant-Based Methodologies and Approaches for Estimating Plant Water Status of Mediterranean Tree Species: A Semi-Systematic Review. Agronomy 2022, 12, 2127. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef]
- Fernández, J.E. Plant-based sensing to monitor water stress: Applicability to commercial orchards. Agric. Water Manag. 2014, 142, 99–109. [Google Scholar] [CrossRef]
- Naor, A.; Klein, I.; Doron, I. Stem water potential and apple fruit size. J. Am. Soc. Hort. Sci. 1995, 120, 577–582. [Google Scholar] [CrossRef]
- Abrisqueta, I.; Conejero, W.; Valdés-Vela, M.; Vera, J.; Ortuño, M.F.; Ruiz-Sánchez, M.C. Stem water potential estimation of drip-irrigated early-maturing peach trees under Mediterranean conditions. Comp. Electron. Agric. 2015, 114, 7–13. [Google Scholar] [CrossRef]
- Fernandes-Silva, A.; Oliveira, M.; Paço, T.A.; Ferreira, I. Deficit Irrigation in Mediterranean Fruit Trees and Grapevines: Water Stress Indicators and Crop Responses. In Irrigation in Agroecosystems; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Shackel, K.A.; Ahmadi, H.; Biasi, W.; Buchner, R.; Goldhamer, D.; Gurusinghe, S.; Hasey, J.; Kester, D.; Krueger, B.; Lampinen, B.; et al. Plant Water Status as an Index of Irrigation Need in Deciduous Fruit Trees. HortTechnol. 1997, 7, 23–29. [Google Scholar] [CrossRef]
- Hueso, A.; González-García, C.; Atencia, L.K.; Novack, J.C.; Gómez del Campo, M. Methodology of stem water potential measurement on hedgerow olive orchards. Span. J. Agric. Res. 2023, 21, e0902. [Google Scholar] [CrossRef]
- Pagay, V.; Santiago, M.; Sessoms, D.A.; Huber, W.J.; Vincent, O.; Pharkya, A.; Corso, T.N.; Lakso, A.N.; Stroock, A.D. A microtensiometer capable of measuring water potential below −10 MPa. Lab Chip. 2014, 14, 2806–2817. [Google Scholar] [CrossRef] [PubMed]
- Blanco, V.; Kalcsits, L. Microtensiometers accurately measure stem water potential. Plants 2021, 10, 2780. [Google Scholar] [CrossRef] [PubMed]
- Blanco, V.; Kalcsits, L. Relating microtensiometer-based trunk water potential with sap flow, canopy temperature, and trunk and fruit diameter variations for irrigated ‘Honeycrisp’ apple. Front. Plant Sci. 2024, 15, 1393028. [Google Scholar] [CrossRef]
- Steppe, K.; Vandegehuchte, M.W.; Tognetti, R.; Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [Google Scholar] [CrossRef]
- Pagay, V. Evaluating a novel microtensiometer for continuous trunk water potential measurements in field-grown irrigated grapevines. Irrig. Sci. 2022, 40, 45–54. [Google Scholar] [CrossRef]
- Christenson, C.G.; Gohardoust, M.R.; Calleja, S.T.; Thorp, K.R.; Tuller, M.; Pauli, D. Monitoring cotton water status with microtensiometers. Irrig. Sci. 2024, 42, 995–1011. [Google Scholar] [CrossRef]
- Blanco, V.; Kalcsits, L. Long-term validation of continuous measurements of trunk water potential and trunk diameter indicate different diurnal patterns for pear under water limitations. Agric. Water Manag. 2023, 281, 108257. [Google Scholar] [CrossRef]
- Gonzalez-Nieto, L.; Huber, A.; Gao, R.; Biasuz, E.C.; Cheng, L.; Stroock, A.D.; Lakso, A.N.; Robinson, T.L. Trunk water potential measured with microtensiometers for managing water stress in “Gala” apple trees. Plants 2023, 12, 1912. [Google Scholar] [CrossRef]
- Nadler, A.; Raveh, E.; Yermiyahu, U.; Green, S. Evaluation of TDR use to monitor water content in stem of lemon trees and soil and their response to water stress. Soil Sci. Soc. Am. J. 2003, 67, 437–448. [Google Scholar] [CrossRef]
- Nadler, A.; Raveh, E.; Yermiyahu, U.; Green, S. Stress induced water content variations in mango stem by time domain reflectometry. Soil Sci. Soc. Am. J. 2006, 70, 510–520. [Google Scholar] [CrossRef]
- Topp, G.; Annan, J.; Davis, A. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- He, H.; Turner, N.C.; Aogu, K.; Dyck, M.; Feng, H.; Si, B.; Wang, J. Time and frequency domain reflectometry for the measurement of tree stem water content: A review, evaluation, and future perspectives. Agric. For. Meteorol. 2021, 306, 108442. [Google Scholar] [CrossRef]
- Holbrook, N.M.; Burns, M.; Sinclair, T. Frequency and time-domain dielectric measurements of stem water content in the arborescent palm, Sabal palmetto. J. Exp. Bot. 1992, 43, 111–119. [Google Scholar] [CrossRef]
- Hernandez-Santana, V.; Martínez-Fernández, J.; Moran, C. Estimation of tree water stress from stem and soil water monitoring with time-domain reflectometry in two small forested basins in Spain. Hydrol. Process. 2008, 22, 2493–2501. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Fereres, E. Irrigation scheduling protocols using continuously recorded trunk diameter measurements. Irrig. Sci. 2001, 20, 115–125. [Google Scholar] [CrossRef]
- Fernández, J.E.; Cuevas, M.V. Irrigation scheduling from stem diameter variations: A review. Agric. For. Meteorol. 2010, 150, 135–151. [Google Scholar] [CrossRef]
- Du, S.; Tong, L.; Zhang, X.; Kang, S.; Du, S.; Li, S.; Ding, R. Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation. Agric. Water Manag. 2017, 190, 21–30. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil water characteristic from texture. Trans. ASAE 1986, 50, 1031–1035. [Google Scholar]
- Nobel, P. Biophysical Plant Physiology and Ecology; W.H. Freeman and Company: New York, NY, USA, 1983; p. 608. [Google Scholar]
- Evett, S.R.; Tolk, J.A.; Howell, T.A. Soil Profile Water Content Determination: Sensor Accuracy, Axial Response, Calibration, Temperature Dependence, and Precision. Vadose Zone J. 2006, 5, 894–907. [Google Scholar] [CrossRef]
- McCutchan, H.; Shackel, K.A. Stem water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). J. Am. Soc. Hort. Sci. 1992, 4, 607–611. [Google Scholar] [CrossRef]
- Lakso, A.M.; Zhu, A.; Santiago, M.; Shackel, V.; Volkov, A.; Stroock, A.D. A microtensiometer sensor to continuously monitor stem water potentials in woody plants-design and field testing. Acta Hortic. 2022, 1335, 317–324. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Evett, S.R.; Anderson, S.; Anderson, D. Evaluation of a direct-coupled TDR for determination of soil water content and bulk electrical conductivity. Vadose Zone J. 2016, 15, 1–8. [Google Scholar] [CrossRef]
- Saito, T.; Yasuda, H.; Sakurai, M.; Acharya, K.; Sueki, S.; Inosako, K.; Yoda, K.; Fujimaki, H.; Abd Elbasit, M.A.M.; Eldoma, A.M.; et al. Monitoring of stem water content of native and invasive trees in arid environments using gs3 soil moisture sensors. Vadose Zone J. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Conesa, M.R.; Domingo, R.; Pérez-Pastor, A. A new approach to ascertain the sensitivity to water stress of different plant water indicators in extra-early nectarine trees. Sci. Hortic. 2014, 169, 147–153. [Google Scholar] [CrossRef]
- Paxian, A.; Hertig, E.; Seubert, S.; Vogt, G.; Jacobeit, J.; Paeth, H. Present-day and future Mediterranean precipitation extremes asessed by different statistical approaches. Clim. Dyn. 2015, 44, 845–860. [Google Scholar] [CrossRef]
- Jones, H.G. Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 2007, 58, 119–130. [Google Scholar] [CrossRef]
- Thompson, R.B.; Gallardo, M.; Aguilera, T.; Valdez, L.C.; Fernández, M.D. Evaluation of watermark sensor for use with drip irrigated vegetable crops. Irrig. Sci. 2006, 24, 185–2002. [Google Scholar] [CrossRef]
- Wang, F.; Hu, W.; Li, T. The influence of freeze–thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hidrol. 2009, 375, 438–449. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Domingo, R.; Gómez-Montiel, J.; Pérez-Pastor, A. Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees. Agric. Water Manag. 2015, 152, 207–216. [Google Scholar] [CrossRef]
- Wong, S.; Cowan, I.; Farquhar, G. Stomatal conductance correlates with photosynthetic capacity. Nature 1979, 282, 424–426. [Google Scholar] [CrossRef]
- Remorini, D.; Massai, R. Comparison of water status indicators for young peach trees. Irrig. Sci. 2003, 22, 39–46. [Google Scholar] [CrossRef]
- Conejero, W.; Alarcón, J.J.; García-Orellana, Y.; Abrisqueta, J.M.; Torrecillas, A. Daily sap flow and maximum daily trunk shrinkage measurements for diagnosing water stress in early maturing peach trees during the post-harvest period. Tree Physiol. 2007, 27, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Stanley, C.D.; Harbaugh, B.K.; Price, J.F. Environmental factors influencing leaf water potential of chrysanthemum. J. Am. Soc. Hortic. Sci. 1983, 108, 237–240. [Google Scholar] [CrossRef]
- Bertold, M.; Dox, I.; De Boeck, H.; Willems, P.; Leys, S.; Papadimitriou, D.; Campioli, M. Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees? Biogeosciences 2021, 18, 3309–3330. [Google Scholar] [CrossRef]
- Conesa, M.R.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. Root Reserves Ascertain Postharvest Sensitivity to Water Deficit of Nectarine Trees. Agronomy 2022, 12, 1805. [Google Scholar] [CrossRef]
- Levin, A.D. Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (Vitis spp.). Agric. Water Manag. 2019, 221, 422–429. [Google Scholar] [CrossRef]
Biosensor | Plant Indicator | Ψstem (MPa) | |
---|---|---|---|
LVDT | MDS (µm) | 0.55 * | |
TDR-305N | KtrunkDR | vs. | 0.12 ns |
MTs | ΨtrunkDR (MPa) | 0.86 *** |
Biosensor | Plant Indicator | Ɵv (%) | Ψsoil (kPa) | |
---|---|---|---|---|
LVDT | MDS (µm) | 0.647 ** | 0.473 * | |
TDR-305N | KtrunkDR | vs. | 0.114 ns | 0.064 ns |
MTs | ΨtrunkDR (MPa) | 0.743 *** | 0.718 *** |
Biosensor | Plant Indicator | Tair (°C) | VPD (kPa) | Ψair (MPa) | ET0 (mm) | |
---|---|---|---|---|---|---|
LVDT | MDS (µm) | 0.791 *** | 0.594 *** | 0.385 ns | 0.547 * | |
TDR-305N | KtrunkDR | vs. | 0.225 ns | 0.375 ns | 0.345 ns | 0.103 ns |
MTs | ΨtrunkDR (MPa) | 0.719 *** | 0.432 ** | 0.248 ns | 0.379 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conesa, M.R.; Conejero, W.; Vera, J.; Ruiz Sánchez, M.C. Plant Biosensors Analysis for Monitoring Nectarine Water Status. Biosensors 2024, 14, 583. https://doi.org/10.3390/bios14120583
Conesa MR, Conejero W, Vera J, Ruiz Sánchez MC. Plant Biosensors Analysis for Monitoring Nectarine Water Status. Biosensors. 2024; 14(12):583. https://doi.org/10.3390/bios14120583
Chicago/Turabian StyleConesa, María R., Wenceslao Conejero, Juan Vera, and M. Carmen Ruiz Sánchez. 2024. "Plant Biosensors Analysis for Monitoring Nectarine Water Status" Biosensors 14, no. 12: 583. https://doi.org/10.3390/bios14120583
APA StyleConesa, M. R., Conejero, W., Vera, J., & Ruiz Sánchez, M. C. (2024). Plant Biosensors Analysis for Monitoring Nectarine Water Status. Biosensors, 14(12), 583. https://doi.org/10.3390/bios14120583