Establishment of Sample-to-Answer Loop-Mediated Isothermal Amplification-Based Nucleic Acid Testing Using the Sampling, Processing, Incubation, Detection and Lateral Flow Immunoassay Platforms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Solution Preparation
2.2.1. Conjugate Buffer
2.2.2. LAMP Reaction Solution
- Stock solution 1:
- Stock solution 2:
- Stock solution 3:
2.3. Bacterial Strains
2.4. Colloidal Gold-Labeled Monoclonal Antibody and Streptavidin
2.5. Primer Design
2.6. Strip Production
2.7. SPID Platform
2.8. Heating Station
2.9. Test Workflow
3. Results
3.1. Development of a LAMP Reaction Solution
3.2. Detection of Amplicons by LFIA
3.2.1. Signal Generation
Comparison of Streptavidin and Monoclonal Anti-Biotin as Colloidal Gold Conjugates
Comparison of Different Conjugate Deposition Methods
3.2.2. Capture
3.3. Limit of Detection
3.4. Validation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, S.; Jiang, Y.; Jiang, X.; Zhao, Y.; Chen, S.; Yang, X.; Man, C. Probe-Free Label System for Rapid Detection of Cronobacter Genus in Powdered Infant Formula. AMB Express 2018, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Yager, P.; Domingo, G.J.; Gerdes, J. Point-of-Care Diagnostics for Global Health. Annu. Rev. Biomed. Eng. 2008, 10, 107–144. [Google Scholar] [CrossRef] [PubMed]
- OMS Point of Care Tests. Available online: https://www.who.int/teams/sexual-and-reproductive-health-and-research-(srh)/areas-of-work/sexual-health/sexually-transmitted-infections/point-of-care-tests (accessed on 3 June 2024).
- Land, K.J.; Boeras, D.I.; Chen, X.-S.; Ramsay, A.R.; Peeling, R.W. REASSURED Diagnostics to Inform Disease Control Strategies, Strengthen Health Systems and Improve Patient Outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, F.; Demirci, U. Advances in Developing HIV-1 Viral Load Assays for Resource-Limited Settings. Biotechnol. Adv. 2010, 28, 770–781. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal Amplification of Nucleic Acids. Chem. Rev. 2015, 115, 12491–12545. [Google Scholar] [CrossRef]
- Karami, A.; Gill, P.; Motamedi, M.H.K.; Saghafinia, M. A Review of the Current Isothermal Amplification Techniques: Applications, Advantages and Disadvantages. J. Glob. Infect. Dis. 2011, 3, 293. [Google Scholar]
- Walker, G.T.; Fraiser, M.S.; Schram, J.L.; Little, M.C.; Nadeau, J.G.; Malinowski, D.P. Strand Displacement Amplification—An Isothermal, in Vitro DNA Amplification Technique. Nucl. Acids Res. 1992, 20, 1691–1696. [Google Scholar] [CrossRef]
- Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.-K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling Circle Amplification: A Versatile Tool for Chemical Biology, Materials Science and Medicine. Chem. Soc. Rev. 2014, 43, 3324–3341. [Google Scholar] [CrossRef]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase Polymerase Amplification: Basics, Applications and Recent Advances. Trends Anal. Chem. 2018, 98, 19–35. [Google Scholar] [CrossRef]
- Mok, E.; Wee, E.; Wang, Y.; Trau, M. Comprehensive Evaluation of Molecular Enhancers of the Isothermal Exponential Amplification Reaction. Sci. Rep. 2016, 6, 37837. [Google Scholar] [CrossRef]
- Spits, C.; Le Caignec, C.; De Rycke, M.; Van Haute, L.; Van Steirteghem, A.; Liebaers, I.; Sermon, K. Whole-Genome Multiple Displacement Amplification from Single Cells. Nat. Protoc. 2006, 1, 1965–1970. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kim, H.-J.; Zheng, C.; Chow, W.H.A.; Lim, J.; Keenan, B.; Pan, X.; Lemieux, B.; Kong, H. Primase-Based Whole Genome Amplification. Nucleic Acids Res. 2008, 36, e79. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, 63e–663. [Google Scholar] [CrossRef] [PubMed]
- Parida, M.; Sannarangaiah, S.; Dash, P.K.; Rao, P.V.L.; Morita, K. Loop Mediated Isothermal Amplification (LAMP): A New Generation of Innovative Gene Amplification Technique; Perspectives in Clinical Diagnosis of Infectious Diseases. Rev. Med. Virol. 2008, 18, 407–421. [Google Scholar] [CrossRef]
- Myrmel, M.; Oma, V.; Khatri, M.; Hansen, H.H.; Stokstad, M.; Berg, M.; Blomström, A.-L. Single Primer Isothermal Amplification (SPIA) Combined with next Generation Sequencing Provides Complete Bovine Coronavirus Genome Coverage and Higher Sequence Depth Compared to Sequence-Independent Single Primer Amplification (SISPA). PLoS ONE 2017, 12, e0187780. [Google Scholar] [CrossRef]
- Hall, J.G.; Eis, P.S.; Law, S.M.; Reynaldo, L.P.; Prudent, J.R.; Marshall, D.J.; Allawi, H.T.; Mast, A.L.; Dahlberg, J.E.; Kwiatkowski, R.W.; et al. Sensitive Detection of DNA Polymorphisms by the Serial Invasive Signal Amplification Reaction. Proc. Natl. Acad. Sci. USA 2000, 97, 8272–8277. [Google Scholar] [CrossRef]
- Zou, B.; Ma, Y.; Wu, H.; Zhou, G. Ultrasensitive DNA Detection by Cascade Enzymatic Signal Amplification Based on Afu Flap Endonuclease Coupled with Nicking Endonuclease. Angew. Chem. Int. Ed. Engl. 2011, 50, 7395–7398. [Google Scholar] [CrossRef]
- Genie® II. OptiGene. Available online: https://www.optigene.co.uk/instruments/genie-ii/ (accessed on 1 July 2024).
- Twista. Twista_manual_revb.Pdf. Available online: https://www.twistdx.co.uk/support/manuals-and-software/devices-and-accessories/twista/ (accessed on 1 July 2024).
- NUCLISENS®EASYQ®. Available online: https://www.biomerieux.it/prodotto/nuclisensreasyqr (accessed on 3 June 2024).
- The SAMBA Platform—DRW. Available online: https://www.drw-ltd.com/solutions/platform/ (accessed on 3 June 2024).
- Assennato, S.M.; Ritchie, A.V.; Nadala, C.; Goel, N.; Tie, C.; Nadala, L.M.; Zhang, H.; Datir, R.; Gupta, R.K.; Curran, M.D.; et al. Performance Evaluation of the SAMBA II SARS-CoV-2 Test for Point-of-Care Detection of SARS-CoV-2. J. Clin. Microbiol. 2020, 59, 10–128. [Google Scholar] [CrossRef]
- Rohrman, B.A.; Richards-Kortum, R.R. A Paper and Plastic Device for Performing Recombinase Polymerase Amplification of HIV DNA. Lab. Chip 2012, 12, 3082–3088. [Google Scholar] [CrossRef]
- Cordray, M.S.; Richards-Kortum, R.R. A Paper and Plastic Device for the Combined Isothermal Amplification and Lateral Flow Detection of Plasmodium DNA. Malar. J. 2015, 14, 472. [Google Scholar] [CrossRef]
- Ahn, H.; Batule, B.S.; Seok, Y.; Kim, M.-G. Single-Step Recombinase Polymerase Amplification Assay Based on a Paper Chip for Simultaneous Detection of Multiple Foodborne Pathogens. Anal. Chem. 2018, 90, 10211–10216. [Google Scholar] [CrossRef] [PubMed]
- Shetty, P.; Ghosh, D.; Singh, M.; Tripathi, A.; Paul, D. Rapid Amplification of Mycobacterium Tuberculosis DNA on a Paper Substrate. RSC Adv. 2016, 6, 56205–56212. [Google Scholar] [CrossRef]
- Marcy, Y.; Ishoey, T.; Lasken, R.S.; Stockwell, T.B.; Walenz, B.P.; Halpern, A.L.; Beeson, K.Y.; Goldberg, S.M.D.; Quake, S.R. Nanoliter Reactors Improve Multiple Displacement Amplification of Genomes from Single Cells. PLoS Genet. 2007, 3, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Linnes, J.C.; Fan, A.; Rodriguez, N.M.; Lemieux, B.; Kong, H.; Klapperich, C.M. Paper-Based Molecular Diagnostic for Chlamydia Trachomatis. RSC Adv. 2014, 4, 42245–42251. [Google Scholar] [CrossRef]
- Magro, L.; Jacquelin, B.; Escadafal, C.; Garneret, P.; Kwasiborski, A.; Manuguerra, J.-C.; Monti, F.; Sakuntabhai, A.; Vanhomwegen, J.; Lafaye, P.; et al. Paper-Based RNA Detection and Multiplexed Analysis for Ebola Virus Diagnostics. Sci. Rep. 2017, 7, 1347. [Google Scholar] [CrossRef]
- Lafleur, L.K.; Bishop, J.D.; Heiniger, E.K.; Gallagher, R.P.; Wheeler, M.D.; Kauffman, P.; Zhang, X.; Kline, E.C.; Buser, J.R.; Kumar, S.; et al. A Rapid, Instrument-Free, Sample-to-Result Nucleic Acid Amplification Test. Lab. Chip 2016, 16, 3777–3787. [Google Scholar] [CrossRef]
- Burns, M.A.; Johnson, B.N.; Brahmasandra, S.N.; Handique, K.; Webster, J.R.; Krishnan, M.; Sammarco, T.S.; Man, P.M.; Jones, D.; Heldsinger, D.; et al. An Integrated Nanoliter DNA Analysis Device. Science 1998, 282, 484–487. [Google Scholar] [CrossRef]
- Yang, J.M.; Bell, J.; Huang, Y.; Tirado, M.; Thomas, D.; Forster, A.H.; Haigis, R.W.; Swanson, P.D.; Wallace, R.B.; Martinsons, B.; et al. An Integrated, Stacked Microlaboratory for Biological Agent Detection with DNA and Immunoassays. Biosens. Bioelectron. 2002, 17, 605–618. [Google Scholar] [CrossRef]
- Andresen, D.; von Nickisch-Rosenegk, M.; Bier, F.F. Helicase Dependent OnChip-Amplification and Its Use in Multiplex Pathogen Detection. Clin. Chim. Acta 2009, 403, 244–248. [Google Scholar] [CrossRef]
- Sato, K.; Tachihara, A.; Renberg, B.; Mawatari, K.; Sato, K.; Tanaka, Y.; Jarvius, J.; Nilsson, M.; Kitamori, T. Microbead-Based Rolling Circle Amplification in a Microchip for Sensitive DNA Detection. Lab. Chip 2010, 10, 1262–1266. [Google Scholar] [CrossRef]
- Volland, H.; Ballesté-Delpierre, C.; Szabó, D.; Gonzalez, C.; Takissian, J.; Aszalos, A.Z.; Ostorhazi, E.; Farkas, S.; Kamotsay, K.; Rosenmoller, M.; et al. Rapid Detection of CTX-M-Type ESBLs and Carbapenemases Directly from Biological Samples Using the BL-DetecTool. J. Antimicrob. Chemother. 2022, 77, 2867–2875. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Pittol, M.; Bosch, J.; Ballesté-Delpierre, C.; Gonzalez, C.; Vasilakopoulou, A.; Berbel, D.; Riccobono, E.; Gatermann, S.; Kamotsay, K.; Reissier, S.; et al. Multicenter Study to Assess the Use of BL-DetecTool for the Detection of CTX-M-Type ESBLs and Carbapenemases Directly from Clinical Specimens. J. Clin. Microbiol. 2024, 62, e0113623. [Google Scholar] [CrossRef] [PubMed]
- Vasilakopoulou, A.; Naas, T.; Gonzalez, C.; Vila, J.; Szabo, D.; Riccobono, E.; Kamotsay, K.; Reissier, S.; Berbel, D.; Aszalos, A.Z.; et al. A Multicentre Evaluation of the NG-Test DetecTool OXA-23 for the Rapid Detection of OXA-23 Carbapenemase Directly from Blood Cultures. JAC Antimicrob. Resist. 2024, 6, dlae029. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, P.A.; Ziros, P.G.; Bellou, M.; Vantarakis, A. Loop-Mediated Isothermal Amplification (LAMP) for the Detection of Salmonella in Food. Food Anal. Methods 2014, 7, 512–526. [Google Scholar] [CrossRef]
- Van Amerongen, A.; Koets, M. Simple and Rapid Bacterial Protein and DNA Diagnostic Methods Based on Signal Generation with Colloidal Carbon Particles. In Rapid Methods for Biological and Chemical Contaminants in Food and Feed; Brill: Leiden, The Netherlands, 2005; pp. 105–126. [Google Scholar] [CrossRef]
- Hill, J.; Beriwal, S.; Chandra, I.; Paul, V.K.; Kapil, A.; Singh, T.; Wadowsky, R.M.; Singh, V.; Goyal, A.; Jahnukainen, T.; et al. Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Common Strains of Escherichia Coli. J. Clin. Microbiol. 2008, 46, 2800–2804. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, S.-Y.; Kim, U.; Oh, S.-W. Diverse Methods of Reducing and Confirming False-Positive Results of Loop-Mediated Isothermal Amplification Assays: A Review. Anal. Chim. Acta 2023, 1280, 341693. [Google Scholar] [CrossRef]
- Boutal, H.; Naas, T.; Devilliers, K.; Oueslati, S.; Dortet, L.; Bernabeu, S.; Simon, S.; Volland, H. Development and Validation of a Lateral Flow Immunoassay for Rapid Detection of NDM-Producing Enterobacteriaceae. J. Clin. Microbiol. 2017, 55, 2018–2029. [Google Scholar] [CrossRef]
- Mori, Y.; Hirano, T.; Notomi, T. Sequence Specific Visual Detection of LAMP Reactions by Addition of Cationic Polymers. BMC Biotechnol. 2006, 6, 3. [Google Scholar] [CrossRef]
- Parida, M.M.; Santhosh, S.R.; Dash, P.K.; Tripathi, N.K.; Lakshmi, V.; Mamidi, N.; Shrivastva, A.; Gupta, N.; Saxena, P.; Babu, J.P.; et al. Rapid and Real-Time Detection of Chikungunya Virus by Reverse Transcription Loop-Mediated Isothermal Amplification Assay. J. Clin. Microbiol. 2007, 45, 351–357. [Google Scholar] [CrossRef]
- Wang, D.-G.; Brewster, J.D.; Paul, M.; Tomasula, P.M. Two Methods for Increased Specificity and Sensitivity in Loop-Mediated Isothermal Amplification. Molecules 2015, 20, 6048. [Google Scholar] [CrossRef]
- Agarwal, P.; Toley, B.J. Unreacted Labeled PCR Primers Inhibit the Signal in a Nucleic Acid Lateral Flow Assay as Elucidated by a Transport Reaction Model. ACS Meas. Au 2022, 2, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Thota, N.; Toley, B.J. A stoichiometric and pseudo kinetic model of loop mediated isothermal amplification. Comput. Struct. Biotechnol. J. 2020, 18, 2336–2346. [Google Scholar] [CrossRef] [PubMed]
- Naranbat, D.; Murphy, J.; Tripathi, A. An Automated Syringe-Based PoC RT-LAMP LFB Platform for Infectious Disease Detection from Saliva. Front. Lab Chip Technol. 2024, 3. [Google Scholar] [CrossRef]
- Deng, H.; Jayawardena, A.; Chan, J.; Tan, S.M.; Alan, T.; Kwan, P. An Ultra-Portable, Self-Contained Point-of-Care Nucleic Acid Amplification Test for Diagnosis of Active COVID-19 Infection. Sci. Rep. 2021, 11, 15176. [Google Scholar] [CrossRef]
- Song, X.; Coulter, F.J.; Yang, M.; Smith, J.L.; Tafesse, F.G.; Messer, W.B.; Reif, J.H. A Lyophilized Colorimetric RT-LAMP Test Kit for Rapid, Low-Cost, at-Home Molecular Testing of SARS-CoV-2 and Other Pathogens. Sci. Rep. 2022, 12, 7043. [Google Scholar] [CrossRef]
- Manzanas, C.; Alam, M.; Loeb, J.C.; Lednicky, J.A.; Wu, C.-Y.; Fan, Z.H. A Valve-Enabled Sample Preparation Device with Isothermal Amplification for Multiplexed Virus Detection at the Point-of-Care. ACS Sens. 2021, 6, 4176–4184. [Google Scholar] [CrossRef]
- Ma, Y.-D.; Li, K.-H.; Chen, Y.-H.; Lee, Y.-M.; Chou, S.-T.; Lai, Y.-Y.; Huang, P.-C.; Ma, H.-P.; Lee, G.-B. A Sample-to-Answer, Portable Platform for Rapid Detection of Pathogens with a Smartphone Interface. Lab. Chip 2019, 19, 3804–3814. [Google Scholar] [CrossRef]
- Sen, A.; Masetty, M.; Weerakoon, S.; Morris, C.; Yadav, J.S.; Apewokin, S.; Trannguyen, J.; Broom, M.; Priye, A. Paper-Based Loop-Mediated Isothermal Amplification and CRISPR Integrated Platform for on-Site Nucleic Acid Testing of Pathogens. Biosens. Bioelectron. 2024, 257, 116292. [Google Scholar] [CrossRef]
- Choi, J.R.; Hu, J.; Gong, Y.; Feng, S.; Abas, W.A.B.W.; Pingguan-Murphy, B.; Xu, F. An Integrated Lateral Flow Assay for Effective DNA Amplification and Detection at the Point of Care. Analyst 2016, 141, 2930–2939. [Google Scholar] [CrossRef]
- Lai, M.Y.; Zen, L.P.Y.; Abdul Hamid, M.H.; Jelip, J.; Mudin, R.N.; Ivan, V.J.S.; Francis, L.N.P.; Saihidi, I.; Lau, Y.L. Point-of-Care Diagnosis of Malaria Using a Simple, Purification-Free DNA Extraction Method Coupled with Loop-Mediated Isothermal Amplification-Lateral Flow. Trop. Med. Infect. Dis. 2023, 8, 199. [Google Scholar] [CrossRef]
- Yang, M.; Tang, Y.; Qi, L.; Zhang, S.; Liu, Y.; Lu, B.; Yu, J.; Zhu, K.; Li, B.; Du, Y. SARS-CoV-2 Point-of-Care (POC) Diagnosis Based on Commercial Pregnancy Test Strips and a Palm-Size Microfluidic Device. Anal. Chem. 2021, 93, 11956–11964. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Lee, J.; Yoon, S.-Y.; Jang, W.S.; Lim, C.S. Rapid Detection of Mycobacterium Tuberculosis Using a Novel Point-of-Care BZ TB/NTM NALF Assay: Integrating LAMP and LFIA Technologies. Diagnostics 2023, 13, 1497. [Google Scholar] [CrossRef]
Name | Sequence | 5′pos | 3′pos | Length | Tm |
---|---|---|---|---|---|
F3 | GGTGTCGATGACAGGTTGTT | 55 | 74 | 20 | 59.71 |
B3 | CCGTTTCTCACCGATGAACA | 269 | 288 | 20 | 59.71 |
F2 | CAAAGGGAGAAGGGCATGG | 76 | 94 | 19 | 59.87 |
F1c | GATACCACGACCTCGCCCCA | 127 | 146 | 20 | 65.62 |
B2 | TCTCACGCCCGGCAATCA | 233 | 250 | 18 | 60.75 |
B1c | ATTCGTGGTGTTTGTCGGACCG | 180 | 201 | 22 | 65.16 |
FIP (F1c-F2) | GATACCACGACCTCGCCCCACAAAGGGAGAAGGGCATGG | 39 | |||
BIP (B1c-B2) | ATTCGTGGTGTTTGTCGGACCGTCTCACGCCCGGCAATCA | 40 | |||
LF | CGTTACATTTTGCAGCTGTACGC | 98 | 120 | 23 | 64.92 |
LB | GGCTGCGGTAAATCGACTTTACT | 205 | 227 | 23 | 64.95 |
Reagents | Original Buffer Composition | LAMP Reaction Solution | |||
---|---|---|---|---|---|
Extraction buffer (Ref. [42]) | Tris-HCl pH 8 | 100 mM | - | ||
NaCl | 0.15 M NaCl | 0.0015 M | |||
BSA | 0.1% | 0.05% | |||
Tween 20 | 0.5% | 0.25% | |||
CHAPS | 1% | 0.5% | |||
Ref. [14] | Ref. [43] | Ref. [44] | |||
LAMP reaction buffers | Tris-HCl pH 8.8 | 20 mM | 20 mM | 20 mM | 25 mM |
FIP/BIP | 0.8 µM | 1.6 µM | 2 µM | 1.6 µM | |
F3/B3 | 0.2 µM | 0.2 µM | 0.2 µM | 0.4 µM | |
LB/LF | - | - | 1 µM | 0.2 µM | |
dNTP | 1.6 mM | 5.6 mM | 1.4 mM | 0.4 mM | |
KCl | 10 mM | 10 mM | 10 mM | 10 mM | |
(NH4)2SO4 | 10 mM | 10 mM | 10 mM | 10 mM | |
MgSO4 | 4 mM | 8 mM | 8 mM | 4 mM | |
Triton X-100 | 0.1% | - | - | 0.1% | |
Betain | 1 M | 0.8 M | 0.8 M | 0.25 M | |
Bst | 320 U/mL | 320 U/mL | 320 U/mL | 160 U/mL | |
Tween-20 | - | - | 0.1% | - |
Primer | Mix 1 | Mix 2 | Mix 3 | Mix 4 |
---|---|---|---|---|
BIP–biotin | 1.6 µM | 1.6 µM | 1.6 µM | 1.6 µM |
FIP | - | 0.8 µM | 1.2 µM | 1.4 µM |
FIP–digoxigenin | 1.6 µM | 0.8 µM | 0.4 µM | 0.2 µM |
B3 | 0.2 µM | 0.2 µM | 0.2 µM | 0.2 µM |
F3 | 0.2 µM | 0.2 µM | 0.2 µM | 0.2 µM |
LB | 0.4 µM | 0.4 µM | 0.4 µM | 0.4 µM |
LF | 0.4 µM | 0.4 µM | 0.4 µM | 0.4 µM |
Strains | Numbre of Isolates | Positive Results | Negative Results |
---|---|---|---|
E. coli | 12 | 12 | 0 |
K. pneumoniae | 10 | 0 | 10 |
E. cloacae | 1 | 0 | 1 |
C. freundii | 4 | 3 | 1 |
C. koseri | 1 | 0 | 1 |
K. oxytoca | 1 | 0 | 1 |
P. aeruginosa | 2 | 0 | 2 |
P. mirabilis | 1 | 0 | 1 |
Extraction | Amplification | Detection | Comments | Total Time | References |
---|---|---|---|---|---|
Lysis by heat | 30 min | Colorimetric |
| 40 min | [50] |
Lysis by heat | 30–40 min | Colorimetric |
| 55 min | [51] |
Lysis buffer | 35 min | Colorimetric |
| 50 min | [52] |
Lysis buffer | 15–20 min | Colorimetric |
| 40 min | [53] |
Lysis buffer and mechanical grinding | 30 min + 4 − 10 min | Fluorescence |
| 40 min + extraction | [54] |
Lysis by heat | 30 min | LFIA |
| 40 min (no indication for the detection step) | [49] |
Lysis buffer | 30 min | LFIA | 60–75 min | Our study |
Extraction | Amplification Time | Dilution Before LFIA | Comments | Total Time | Reference |
---|---|---|---|---|---|
No | 60 min | No |
| 75 min | [55] |
Yes | 50 min | Yes |
| 60 min | [56] |
No | 60 min | No |
| Less than 120 | [57] |
No | 30 min | Yes |
| 40 min | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pommiès, L.; Boutal, H.; Fras, D.; Volland, H. Establishment of Sample-to-Answer Loop-Mediated Isothermal Amplification-Based Nucleic Acid Testing Using the Sampling, Processing, Incubation, Detection and Lateral Flow Immunoassay Platforms. Biosensors 2024, 14, 609. https://doi.org/10.3390/bios14120609
Pommiès L, Boutal H, Fras D, Volland H. Establishment of Sample-to-Answer Loop-Mediated Isothermal Amplification-Based Nucleic Acid Testing Using the Sampling, Processing, Incubation, Detection and Lateral Flow Immunoassay Platforms. Biosensors. 2024; 14(12):609. https://doi.org/10.3390/bios14120609
Chicago/Turabian StylePommiès, Lilas, Hervé Boutal, David Fras, and Hervé Volland. 2024. "Establishment of Sample-to-Answer Loop-Mediated Isothermal Amplification-Based Nucleic Acid Testing Using the Sampling, Processing, Incubation, Detection and Lateral Flow Immunoassay Platforms" Biosensors 14, no. 12: 609. https://doi.org/10.3390/bios14120609
APA StylePommiès, L., Boutal, H., Fras, D., & Volland, H. (2024). Establishment of Sample-to-Answer Loop-Mediated Isothermal Amplification-Based Nucleic Acid Testing Using the Sampling, Processing, Incubation, Detection and Lateral Flow Immunoassay Platforms. Biosensors, 14(12), 609. https://doi.org/10.3390/bios14120609