Recent Advances of Strategies and Applications in Aptamer-Combined Metal Nanocluster Biosensing Systems
Abstract
:1. Introduction
2. Metal NC Aptasensor for Molecule Detection and Monitoring
2.1. Metal NC as a Sensing Material
2.2. Diverse Metal NCs for the Detection of Molecules
2.3. Strategy for Molecule Detection Using Metal NC Aptasensors
3. Current Aptamer-Combined Metal NC for Chemical and Biomolecule Detection
3.1. Signal Changes by Aptamer-Functionalised NCs
3.2. Signal Changes in NCs Produced by Aptamer-Linked DNA Templates
3.3. Signal Changes in NCs Induced by Aptamer–DNA Template Hybridisation
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehrotra, P. Biosensors and their applications—A review. J. Oral. Bio. Craniofac. Res. 2016, 6, 153–159. [Google Scholar] [CrossRef]
- Alhadrami, H.A. Biosensors: Classifications, medical applications, and future prospective. Biotechnol. Appl. Biochem. 2018, 65, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016, 34, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Khalid, K.; Tan, X.; Mohd Zaid, H.F.; Tao, Y.; Lye Chew, C.; Chu, D.-T.; Lam, M.K.; Ho, Y.-C.; Lim, J.W.; Chin Wei, L. Advanced in developmental organic and inorganic nanomaterial: A review. Bioengineered 2020, 11, 328–355. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Park, J.S.; Jung, S.-W.; Yeom, J.; Yoo, S.M. Biosensing applications using nanostructure-based localized surface plasmon resonance sensors. Sensors 2021, 21, 3191. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, S. Aptamer-conjugated quantum dot optical biosensors: Strategies and applications. Chemosensors 2021, 9, 318. [Google Scholar] [CrossRef]
- Fathi, F.; Rashidi, M.-R.; Pakchin, P.S.; Ahmadi-Kandjani, S.; Nikniazi, A. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 2021, 221, 121615. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, C.; Feng, G.; Fang, J. Hospitals and laboratories on paper-based sensors: A mini review. Sensors 2021, 21, 5998. [Google Scholar] [CrossRef]
- Shetti, N.P.; Mishra, A.; Basu, S.; Mascarenhas, R.J.; Kakarla, R.R.; Aminabhavi, T.M. Skin-patchable electrodes for biosensor applications: A review. ACS Biomater. Sci. Eng. 2020, 6, 1823–1835. [Google Scholar] [CrossRef]
- Yokus, M.A.; Songkakul, T.; Pozdin, V.A.; Bozkurt, A.; Daniele, M.A. Wearable multiplexed biosensor system toward continuous monitoring of metabolites. Biosens. Bioelectron. 2020, 153, 112038. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhu, L.; Yang, W.; Xu, W. Nucleic acid-templated silver nanoclusters: A review of structures, properties, and biosensing applications. Coord. Chem. Rev. 2023, 491, 215247. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9, 132–157. [Google Scholar] [CrossRef]
- Qing, T.; Feng, B.; Zhang, P.; Zhang, K.; He, X.; Wang, K. Beyond native deoxyribonucleic acid, templating fluorescent nanomaterials for bioanalytical applications: A review. Anal. Chim. Acta 2020, 1105, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-M.; Go, M.-J.; Lee, J.; Na, D.; Yoo, S.-M. Recent advances in micro/nanomaterial-based aptamer selection strategies. Molecules 2021, 26, 5187. [Google Scholar] [CrossRef] [PubMed]
- Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017, 1, 0076. [Google Scholar] [CrossRef]
- Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y. Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl. Mater. Interfaces 2020, 13, 9500–9519. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, L.A.; Wei, Q.; Barui, A.K.; Mohammad, N. Recent advances in aptamer-based biosensors for global health applications. Annu. Rev. Biomed. Eng. 2021, 23, 433–459. [Google Scholar] [CrossRef]
- Zhou, B.; Khan, I.M.; Ding, X.; Niazi, S.; Zhang, Y.; Wang, Z. Fluorescent DNA-Silver nanoclusters in food safety detection: From synthesis to application. Talanta 2024, 273, 125834. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.F.; Wong, W.T.; Rogach, A.L. Development of copper nanoclusters for in vitro and in vivo theranostic applications. Adv. Mater. 2020, 32, 1906872. [Google Scholar] [CrossRef]
- Lettieri, M.; Palladino, P.; Scarano, S.; Minunni, M. Copper nanoclusters and their application for innovative fluorescent detection strategies: An overview. Sens. Actuators Rep. 2022, 4, 100108. [Google Scholar] [CrossRef]
- Xue, Y.; Cheng, Z.; Luo, M.; Hu, H.; Xia, C. Synthesis of copper nanocluster and its application in pollutant analysis. Biosensors 2021, 11, 424. [Google Scholar] [CrossRef]
- Mandal, S.; Alam, N.; Das, A.K.; Priyanka, C.; Baidya, P. A Recent progress in atomically precise silver nanocluster assembled materials. Nanoscale 2024, 16, 10087–10107. [Google Scholar]
- Chen, Y.; Phipps, M.L.; Werner, J.H.; Chakraborty, S.; Martinez, J.S. DNA templated metal nanoclusters: From emergent properties to unique applications. Acc. Chem. Res. 2018, 51, 2756–2763. [Google Scholar] [CrossRef]
- Kang, X.; Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457. [Google Scholar] [CrossRef] [PubMed]
- Jin, R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343–362. [Google Scholar] [CrossRef]
- Shang, L.; Xu, J.; Nienhaus, G.U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 2019, 28, 100767. [Google Scholar] [CrossRef]
- Zhu, M.; Aikens, C.M.; Hollander, F.J.; Schatz, G.C.; Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Ceram. Soc. 2008, 130, 5883–5885. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R. ph-Dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv. Funct. Mater. 2011, 21, 3508–3515. [Google Scholar] [CrossRef]
- Schmid, G.; Bäumle, M.; Geerkens, M.; Heim, I.; Osemann, C.; Sawitowski, T. Current and future applications of nanoclusters. Chem. Soc. Rev. 1999, 28, 179–185. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, C.; Kauffman, D.R.; Jin, R. Tuning the magic size of atomically precise gold nanoclusters via isomeric methylbenzenethiols. Nano Lett. 2015, 15, 3603–3609. [Google Scholar] [CrossRef]
- Qing, T.; Zhang, K.; Qing, Z.; Wang, X.; Long, C.; Zhang, P.; Hu, H.; Feng, B. Recent progress in copper nanocluster-based fluorescent probing: A review. Microchim. Acta 2019, 186, 670. [Google Scholar] [CrossRef] [PubMed]
- Tlahuice-Flores, A.; Whetten, R.L.; Jose-Yacaman, M. Ligand effects on the structure and the electronic optical properties of anionic Au25(SR)18 clusters. J. Phys. Chem. C 2013, 117, 20867–20875. [Google Scholar] [CrossRef]
- Wang, X.; Long, C.; Jiang, Z.; Qing, T.; Zhang, K.; Zhang, P.; Feng, B. In situ synthesis of fluorescent copper nanoclusters for rapid detection of ascorbic acid in biological samples. Anal. Methods 2019, 11, 4580–4585. [Google Scholar] [CrossRef]
- Xie, J.; Zheng, Y.; Ying, J.Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Gu, Y.; Tang, L.-J.; Yu, R.-Q.; Jiang, J.-H. Peptide-templated gold nanocluster beacon as a sensitive, label-free sensor for protein post-translational modification enzymes. Anal. Chem. 2013, 85, 11681–11685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhu, J.; Guo, S.; Li, T.; Li, J.; Wang, E. Photoinduced electron transfer of DNA/Ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors. J. Am. Chem. Soc. 2013, 135, 2403–2406. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Hu, Y.; Cen, Y.; Chu, X.; Lu, Y. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J. Am. Chem. Soc. 2013, 135, 11595–11602. [Google Scholar] [CrossRef]
- Francos, M.A.E.; Badía-Laíño, R.; Díaz-García, M.E. Fluorescence sensitization of gold-glutathione nanoclusters by aqueous solutions of sodium and potassium ions. Microchim. Acta 2015, 182, 1591–1598. [Google Scholar] [CrossRef]
- Tang, T.; Ouyang, J.; Hu, L.; Guo, L.; Yang, M.; Chen, X. Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe (III) in human serum. Microchim. Acta 2016, 183, 2831–2836. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, C.; Cao, F.; Ren, J.; Qu, X. DNA metallization: Principles, methods, structures, and applications. Chem. Soc. Rev. 2018, 47, 4017–4072. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Jin, R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573. [Google Scholar] [CrossRef]
- Lee, D.; Donkers, R.L.; Wang, G.; Harper, A.S.; Murray, R.W. Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. J. Am. Ceram. Soc. 2004, 126, 6193–6199. [Google Scholar] [CrossRef]
- Kim, J.S.; Chang, H.; Kang, S.; Cha, S.; Cho, H.; Kwak, S.J.; Park, N.; Kim, Y.; Kang, D.; Song, C.K. Critical roles of metal–ligand complexes in the controlled synthesis of various metal nanoclusters. Nat. Commun. 2023, 14, 3201. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Bain, D.; Patra, A. An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. Nanoscale 2019, 11, 22685–22723. [Google Scholar] [CrossRef]
- Liisberg, M.B.; Shakeri Kardar, Z.; Copp, S.M.; Cerretani, C.; Vosch, T. Single-molecule detection of DNA-stabilized silver nanoclusters emitting at the NIR I/II border. J. Phys. Chem. Lett. 2021, 12, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhu, X.; Zhou, X.; Khusbu, F.Y.; Ma, C. Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters. TrAC Trends Anal. Chem. 2020, 124, 115786. [Google Scholar] [CrossRef]
- Zhang, X.; Du, Y.; Liu, X.; Feng, R.; Jia, Y.; Ren, X.; Zhang, N.; Liu, L.; Wei, Q.; Ju, H. Enhanced anode electrochemiluminescence in split aptamer sensor for kanamycin trace monitoring. Food Chem. 2023, 420, 136083. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Pan, X.; Zhang, W.; Hu, Z.; Wong, K.-W.; He, Z.; Li, H.-W. Label-free probes using DNA-templated silver nanoclusters as versatile reporters. Biosens. Bioelectron. 2020, 150, 111926. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Rocha, R.C.; Phipps, M.L.; Yeh, H.-C.; Balatsky, K.A.; Vu, D.M.; Shreve, A.P.; Werner, J.H.; Martinez, J.S. A DNA-templated fluorescent silver nanocluster with enhanced stability. Nanoscale 2012, 4, 4107–4110. [Google Scholar] [CrossRef] [PubMed]
- Obliosca, J.M.; Babin, M.C.; Liu, C.; Liu, Y.-L.; Chen, Y.-A.; Batson, R.A.; Ganguly, M.; Petty, J.T.; Yeh, H.-C. A complementary palette of NanoCluster Beacons. ACS Nano 2014, 8, 10150–10160. [Google Scholar] [CrossRef] [PubMed]
- Saraswathi, S.K.; Vittala, S.K.; Manayani, M.K.; Joseph, J. Sequence programmed DNA three-way junctions for templated assembly of fluorescent silver nanoclusters. J. Photochem. Photobiol. B Biol. 2020, 207, 111886. [Google Scholar] [CrossRef] [PubMed]
- Gwinn, E.G.; ONeill, P.; Guerrero, A.J.; Bouwmeester, D.; Fygenson, D.K. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv. Mater.-Deerfield Beach Then Weinh. 2008, 20, 279. [Google Scholar] [CrossRef]
- Guo, W.; Yuan, J.; Dong, Q.; Wang, E. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J. Am. Chem. Soc. 2010, 132, 932–934. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Pu, F.; Hu, D.; Wang, C.; Ren, J.; Qu, X. Site-specific DNA-programmed growth of fluorescent and functional silver nanoclusters. Chem. Eur. J. 2011, 17, 3774–3780. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Cui, Q.; Liu, G.; Wu, F.; Xu, S.; Shao, Y. DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition. Nanotechnology 2011, 22, 305502. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liisberg, M.B.; Nolt, G.L.; Fu, X.; Cerretani, C.; Li, L.; Johnson, L.A.; Vosch, T.; Richards, C.I. DNA-AgNC loaded liposomes for measuring cerebral blood flow using two-photon fluorescence correlation spectroscopy. ACS Nano 2023, 17, 12862–12874. [Google Scholar] [CrossRef] [PubMed]
- Guha, R.; Gonzàlez-Rosell, A.; Rafik, M.; Arevalos, N.; Katz, B.B.; Copp, S.M. Electron count and ligand composition influence the optical and chiroptical signatures of far-red and NIR-emissive DNA-stabilized silver nanoclusters. Chem. Sci. 2023, 14, 11340–11350. [Google Scholar] [CrossRef]
- Peng, X.; Zhu, J.; Wen, W.; Bao, T.; Zhang, X.; He, H.; Wang, S. Silver nanoclusters-assisted triple-amplified biosensor for ultrasensitive methyltransferase activity detection based on AuNPs/ERGO hybrids and hybridization chain reaction. Biosens. Bioelectron. 2018, 118, 174–180. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Lu, C.; Yang, X. Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125. Sens. Actuators B Chem. 2018, 262, 9–16. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.X.; Wu, H.B.; Xia, B.Y.; Xu, C.Y.; Lou, X.W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem. Int. Ed. 2015, 54, 15395–15399. [Google Scholar] [CrossRef]
- Ye, Y.-D.; Xia, L.; Xu, D.-D.; Xing, X.-J.; Pang, D.-W.; Tang, H.-W. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences. Biosens. Bioelectron. 2016, 85, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.M.; Niazi, S.; Yu, Y.; Mohsin, A.; Mushtaq, B.S.; Iqbal, M.W.; Rehman, A.; Akhtar, W.; Wang, Z. Aptamer induced multicolored AuNCs-WS2 “turn on” FRET nano platform for dual-color simultaneous detection of aflatoxinB1 and zearalenone. Anal. Chem. 2019, 91, 14085–14092. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.M.; Zhao, S.; Niazi, S.; Mohsin, A.; Shoaib, M.; Duan, N.; Wu, S.; Wang, Z. Silver nanoclusters based FRET aptasensor for sensitive and selective fluorescent detection of T-2 toxin. Sens. Actuators B Chem. 2018, 277, 328–335. [Google Scholar] [CrossRef]
- Soundy, J.; Day, D. Delivery of antibacterial silver nanoclusters to Pseudomonas aeruginosa using species-specific DNA aptamers. J. Med. Microbiol. 2020, 69, 640–652. [Google Scholar] [CrossRef]
- Javani, S.; Lorca, R.; Latorre, A.; Flors, C.; Cortajarena, A.L.; Somoza, Á. Antibacterial activity of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence. ACS Appl. Mater. Interfaces 2016, 8, 10147–10154. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yao, C.; Li, F.; Dong, Y.; Zhang, Z.; Yang, D. Synthesis of branched DNA scaffolded super-nanoclusters with enhanced antibacterial performance. Small 2018, 14, 1800185. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, Y.; Cao, Y.; Guo, Z.; Li, F.; Wang, L. Construction of chitosan-based hydrogel incorporated with antimonene nanosheets for rapid capture and elimination of bacteria. Adv. Funct. Mater. 2020, 30, 2003196. [Google Scholar] [CrossRef]
- Qing, Z.; He, X.; He, D.; Wang, K.; Xu, F.; Qing, T.; Yang, X. Poly (thymine)-templated selective formation of fluorescent copper nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 9719. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Shi, Y.; He, D.; Xu, S.; Ouyang, J. Sequence-dependent dsDNA-templated formation of fluorescent copper nanoparticles. Chem. Eur. J. 2015, 21, 2417–2422. [Google Scholar] [CrossRef]
- Chen, J.; Ji, X.; Tinnefeld, P.; He, Z. Multifunctional dumbbell-shaped DNA-templated selective formation of fluorescent silver nanoclusters or copper nanoparticles for sensitive detection of biomolecules. ACS Appl. Mater. Interfaces 2016, 8, 1786–1794. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, F.; Lei, X.; Mang, L.; Cheng, S.; Song, J. Fluorescent copper nanoparticles: Recent advances in synthesis and applications for sensing metal ions. Nanoscale 2016, 8, 4852–4863. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Liu, J.-W.; Duan, L.-Y.; Liu, S.-J.; Jiang, J.-H. Aptamer-based fluorometric determination of ATP by using target-cycling strand displacement amplification and copper nanoclusters. Microchim. Acta 2017, 184, 4183–4188. [Google Scholar] [CrossRef]
- Wang, L.; Shi, F.; Li, Y.; Su, X. An ultra-sensitive and label-free fluorescent probe for trypsin and inhibitor based on DNA hosted Cu nanoclusters. Sens. Actuators B Chem. 2016, 222, 945–951. [Google Scholar] [CrossRef]
- Zhou, F.; Cui, X.; Shang, A.; Lian, J.; Yang, L.; Jin, Y.; Li, B. Fluorometric determination of the activity and inhibition of terminal deoxynucleotidyl transferase via in-situ formation of copper nanoclusters using enzymatically generated DNA as template. Microchim. Acta 2017, 184, 773–779. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, K.; Du, Z.; Fang, B.; Zhan, J.; Zhu, L.; Xu, W. Magnetic aptamer copper nanoclusters fluorescent biosensor for the visual detection of zearalenone based on docking-aided rational tailoring. Food Chem. 2024, 448, 139127. [Google Scholar] [CrossRef]
- Jin, R. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Qin, R.; Fu, G.; Zheng, N. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131. [Google Scholar] [CrossRef]
- Dou, S.; Liu, M.; Zhang, F.; Li, B.; Zhang, Y.; Li, F.; Guo, Y.; Sun, X. Silver/copper bimetallic nanoclusters integrating with cryonase-assisted target recycling amplification detection of Salmonella typhimurium. Microchim. Acta 2023, 190, 403. [Google Scholar] [CrossRef]
- Guo, H.; Sun, Y.; Ma, P.; Khan, I.M.; Duan, N.; Wang, Z. Sensitive detection of patulin based on DNase Ⅰ-assisted fluorescent aptasensor by using AuNCs-modified truncated aptamer. Food Control 2022, 131, 108430. [Google Scholar] [CrossRef]
- Su, F.; Zhang, S.; Ji, H.; Zhao, H.; Tian, J.-Y.; Liu, C.-S.; Zhang, Z.; Fang, S.; Zhu, X.; Du, M. Two-dimensional zirconium-based metal–organic framework nanosheet composites embedded with Au nanoclusters: A highly sensitive electrochemical aptasensor toward detecting cocaine. Acs Sens. 2017, 2, 998–1005. [Google Scholar] [CrossRef]
- Li, C.; He, X.; Li, H.; Xiao, Y.; Xu, X.; Jiang, C.; Wen, G.; Jiang, Z. A new COF@AuNC catalytic amplification-aptamer SERS quantitative analysis method for trace estradiol with nanoreaction of HAuCl4-sulfite. Microchem. J. 2023, 191, 108920. [Google Scholar] [CrossRef]
- Xiong, J.; He, S.; Zhang, S.; Qin, L.; Yang, L.; Wang, Z.; Zhang, L.; Shan, W.; Jiang, H. A label-free aptasensor for dual-mode detection of aflatoxin B1 based on inner filter effect using silver nanoparticles and arginine-modified gold nanoclusters. Food Control 2023, 144, 109397. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, Y.; Huang, P.; Wu, F.-Y. Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics. Talanta 2020, 208, 120342. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.M.; Niazi, S.; Yu, Y.; Pasha, I.; Yue, L.; Mohsin, A.; Shoaib, M.; Iqbal, M.W.; Khaliq, A.; Wang, Z. Fabrication of PAA coated green-emitting AuNCs for construction of label-free FRET assembly for specific recognition of T-2 toxin. Sens. Actuators B Chem. 2020, 321, 128470. [Google Scholar] [CrossRef]
- Xie, X.; Tan, F.; Xu, A.; Deng, K.; Zeng, Y.; Huang, H. UV-induced peroxidase-like activity of gold nanoclusters for differentiating pathogenic bacteria and detection of enterotoxin with colorimetric readout. Sens. Actuators B Chem. 2019, 279, 289–297. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, S.; Wang, Y.; Ye, N.; Xiang, Y. Aptamer act as fluorescence switching of bovine serum albumin stabilized gold nanoclusters for ultrasensitive detection of kanamycin in milk. Microchem. J. 2021, 165, 106145. [Google Scholar] [CrossRef]
- Mu, F.; He, J.; Fan, F.; Shi, G. Dual-emission fluorescence biosensing of vancomycin based on AIEgen–peptide conjugates and aptamer-modified Au nanoclusters. Anal. Chim. Acta 2021, 1150, 238177. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, J.; Meng, X.; Xu, Z.; Zhang, J.; Fang, Y.; Guo, Y. Electrochemical aptamer-based microsensor for real-time monitoring of adenosine in vivo. Anal. Chim. Acta 2019, 1076, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Gao, R.; Jia, L. Enhancement of the peroxidase-like activity of aptamers modified gold nanoclusters by bacteria for colorimetric detection of Salmonella typhimurium. Talanta 2021, 221, 121476. [Google Scholar] [CrossRef]
- Zhi, S.; Shi, J.; Liang, A.; Jiang, Z. MXene nanosheet loaded gold nanocluster catalytic amplification–aptamer SERS quantitative assay platform for isocarbophos. Talanta 2023, 251, 123771. [Google Scholar] [CrossRef]
- Yao, D.; Li, C.; Wang, H.; Wen, G.; Liang, A.; Jiang, Z. A new dual-mode SERS and RRS aptasensor for detecting trace organic molecules based on gold nanocluster-doped covalent-organic framework catalyst. Sens. Actuators B Chem. 2020, 319, 128308. [Google Scholar] [CrossRef]
- Duan, N.; Li, C.; Song, M.; Ren, K.; Wang, Z.; Wu, S. Deoxynivalenol fluorescence aptasensor based on AuCu bimetallic nanoclusters and MoS2. Microchim. Acta 2022, 189, 296. [Google Scholar] [CrossRef]
- Chen, S.; Lv, X.; Shen, J.; Pan, S.; Jiang, Z.; Xiao, Y.; Wen, G. Sensitive aptamer SERS and RRS assays for trace oxytetracycline based on the catalytic amplification of CuNCs. Nanomaterials 2021, 11, 2501. [Google Scholar] [CrossRef]
- Shi, Y.; Li, W.; Feng, X.; Lin, L.; Nie, P.; Shi, J.; Zou, X.; He, Y. Sensing of mercury ions in Porphyra by Copper@ Gold nanoclusters based ratiometric fluorescent aptasensor. Food Chem. 2021, 344, 128694. [Google Scholar] [CrossRef]
- Yang, S.; Li, C.; Zhan, H.; Liu, R.; Chen, W.; Wang, X.; Xu, K. A label-free fluorescent biosensor based on specific aptamer-templated silver nanoclusters for the detection of tetracycline. J. Nanobiotechnol. 2023, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Khan, I.M.; Ji, H.; Wang, Z.; Tian, H.; Cao, W.; Mi, W. A label-free fluorescent aptasensor for detection of staphylococcal enterotoxin A based on aptamer-functionalized silver nanoclusters. Polymers 2020, 12, 152. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, C. Highly sensitive and selective detection of Pb2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor. Talanta 2018, 182, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, Y.; Wang, Z. A” turn-on” FRET aptasensor based on the metal-organic framework-derived porous carbon and silver nanoclusters for zearalenone determination. Sens. Actuators B Chem. 2021, 347, 130661. [Google Scholar] [CrossRef]
- Abbaspour, A.; Norouz-Sarvestani, F.; Noori, A.; Soltani, N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens. Bioelectron. 2015, 68, 149–155. [Google Scholar] [CrossRef]
- Zheng, C.; Zheng, A.-X.; Liu, B.; Zhang, X.-L.; He, Y.; Li, J.; Yang, H.-H.; Chen, G. One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem. Commun. 2014, 50, 13103–13106. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, B.; Xu, Z.; Wu, Y.; Wang, Y.; Ning, G. A fluorescent assay for sensitive detection of kanamycin by split aptamers and DNA-based copper/silver nanoclusters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 286, 121953. [Google Scholar] [CrossRef]
- Ding, Y.; Li, X.; Guo, Y.; Duan, W.; Ling, J.; Zha, L.; Yan, J.; Zou, Y.; Cai, J. Estimation of postmortem interval by vitreous potassium evaluation with a novel fluorescence aptasensor. Sci. Rep. 2017, 7, 1868. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, P.; Lin, C.; Wu, Y.; Chen, Z.; Fu, F. DNA-templated fluorescent silver nanoclusters on-off switch for specific and sensitive determination of organic mercury in seafood. Biosens. Bioelectron. 2021, 183, 113217. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, L.; Yang, M.; Liu, A.; Xu, W.; He, P. Silver nanocluster-based aptasensor for the label-free and enzyme-free detection of ochratoxin A. Food Chem. 2024, 431, 137126. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chen, X.; Zhu, L.; Lin, S.; Li, C.; Li, X.; Huang, K.; Xu, W. Aptamer-functionalized DNA–Silver nanocluster nanofilm for visual detection and elimination of bacteria. ACS Appl. Mater. Interfaces 2021, 13, 38647–38655. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, K.; Zhu, X.; Xie, M. A label-free kissing complexes-induced fluorescence aptasensor using DNA-templated silver nanoclusters as a signal transducer. Biosens. Bioelectron. 2016, 78, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Lin, X.; Duan, N.; Wang, Z.; Wu, S. A fluorescence and surface-enhanced Raman scattering dual-mode aptasensor for sensitive detection of deoxynivalenol based on gold nanoclusters and silver nanoparticles modified metal-polydopamine framework. Anal. Chim. Acta 2023, 1244, 340846. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.-G.; Su, C.-Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822. [Google Scholar] [CrossRef] [PubMed]
- Mullangi, D.; Nandi, S.; Shalini, S.; Sreedhala, S.; Vinod, C.P.; Vaidhyanathan, R. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, CC couplings and CO oxidation. Sci. Rep. 2015, 5, 10876. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, W.; Chen, Y.; Fan, J.; Tong, C.; Liu, B. Aptamer-tagged silver nanoclusters for cell image and Mucin1 detection in vitro. Talanta 2019, 205, 120075. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chen, Y.; Li, X.; Fang, W. Pb2+ induced DNA conformational switch from hairpin to G-quadruplex: Electrochemical detection of Pb2+. Analyst 2011, 136, 2367–2372. [Google Scholar] [CrossRef]
- Yin, B.-C.; Ma, J.-L.; Le, H.-N.; Wang, S.; Xu, Z.; Ye, B.-C. A new mode to light up an adjacent DNA-scaffolded silver probe pair and its application for specific DNA detection. Chem. Commun. 2014, 50, 15991–15994. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Yoo, S.M. DNA-modifying enzyme reaction-based biosensors for disease diagnostics: Recent biotechnological advances and future perspectives. Crit. Rev. Biotechnol. 2020, 40, 787–803. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, L.; Teng, Y.; Lou, B.; Jia, X.; Gu, X.; Wang, E. G-quadruplex enhanced fluorescence of DNA–silver nanoclusters and their application in bioimaging. Nanoscale 2015, 7, 13224–13229. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, J.; Fan, D.; Teng, Y.; Zhu, X.; Dong, S. A multicolor chameleon DNA-templated silver nanocluster and its application for ratiometric fluorescence target detection with exponential signal response. Adv. Funct. Mater. 2017, 27, 1704092. [Google Scholar] [CrossRef]
- Mohseni, N.; Moodi, M.; Kefayat, A.; Shokati, F.; Molaabasi, F. Challenges and opportunities of using fluorescent metal nanocluster-based colorimetric assays in medicine. ACS Omega 2024, 9, 3143–3163. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Han, Z.; Chen, S.; Wei, K.; Wei, X. Metallic nanoclusters: From synthetic challenges to applications of their unique properties in food contamination detection. Coord. Chem. Rev. 2023, 478, 214964. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Vu, H.T.; Liu, Y.-L.; Chen, Y.-I.; Nguyen, T.D.; Kuo, Y.-A.; Hong, S.; Chen, Y.-A.; Carnahan, S.; Petty, J.T. Improving NanoCluster Beacon performance by blocking the unlabeled NC probes. Chem. Commun. 2019, 55, 462–465. [Google Scholar] [CrossRef]
- Qian, J.; Yang, Y.; Gong, F.; Shan, X.; Ji, X.; He, Z. Ratiometric fluorescence biosensing of silver NanoCluster Beacons for ATP detection based on ligation-triggered rolling cycle amplification. Microchem. J. 2023, 190, 108663. [Google Scholar] [CrossRef]
- Yeh, H.-C.; Sharma, J.; Han, J.J.; Martinez, J.S.; Werner, J.H. A beacon of light. IEEE Nanotechnol. Mag. 2011, 5, 28–33. [Google Scholar] [CrossRef]
- Ang, Y.S.; Woon, W.W.E.; Yung, L.-Y.L. The role of spacer sequence in modulating turn-on fluorescence of DNA-templated silver nanoclusters. Nucleic Acids Res. 2018, 46, 6974–6982. [Google Scholar] [CrossRef]
- Kuo, Y.A.; Jung, C.; Chen, Y.A.; Kuo, H.C.; Zhao, O.S.; Nguyen, T.D.; Rybarski, J.R.; Hong, S.; Chen, Y.I.; Wylie, D.C. Massively parallel selection of nanocluster beacons. Adv. Mater. 2022, 34, 2204957. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, E.; Mastracco, P.; Gonzàlez-Rosell, A.; Copp, S.M.; Bogdanov, P. Multi-objective design of DNA-stabilized nanoclusters using variational autoencoders with automatic feature extraction. ACS Nano 2024, 18, 26997–27008. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hu, L.; Zhang, B.-T.; Lu, A.; Wang, Y.; Yu, Y.; Zhang, G. Artificial intelligence in aptamer–target binding prediction. Int. J. Mol. Sci. 2021, 22, 3605. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Cho, J.; Lee, B.-H.; Hwang, D.; Park, J.-W. Design and prediction of aptamers assisted by in silico methods. Biomedicines 2023, 11, 356. [Google Scholar] [CrossRef]
- Wang, J.; Yu, J.; Yang, Q.; McDermott, J.; Scott, A.; Vukovich, M.; Lagrois, R.; Gong, Q.; Greenleaf, W.; Eisenstein, M. Multiparameter particle display (MPPD): A quantitative screening method for the discovery of highly specific aptamers. Angew. Chem. 2017, 129, 762–765. [Google Scholar] [CrossRef]
- Bashir, A.; Yang, Q.; Wang, J.; Hoyer, S.; Chou, W.; McLean, C.; Davis, G.; Gong, Q.; Armstrong, Z.; Jang, J. Machine learning guided aptamer refinement and discovery. Nat. Commun. 2021, 12, 2366. [Google Scholar] [CrossRef]
- Hong, S.; Walker, J.N.; Luong, A.T.; Mathews, J.; Shields, S.W.; Kuo, Y.-A.; Chen, Y.-I.; Nguyen, T.D.; He, Y.; Nguyen, A.-T. A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion. Nat. Nanotechnol. 2024, 19, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Shahzad, F.; Qiu, B.; Fang, X.; Ammar, A.; Luo, Z.; Zaidi, S.A. MXene-based aptasensors: Advances, challenges, and prospects. Prog. Mater. Sci. 2022, 129, 100967. [Google Scholar]
Metal | Advantages | Limitations |
---|---|---|
AuNC |
|
|
AgNC |
|
|
CuNC |
|
|
Bimetallic NC |
|
|
Metal | Usage | Analyte | Detection Method | Linear Range | LoD | Sample | Feature | Reference |
---|---|---|---|---|---|---|---|---|
Au | Detection | Kanamycin | Electrochemiluminescence | 50.00 fg/mL–50.00 ng/mL | 32.90 fg/mL | Milk, honey | Use of cucurbit[7]uril@Try-MPA-AuNC with improved ECL performance as the anode signal probe. | [47] |
Au | Detection | Aflatoxin B1 (AFB1), zearalenone (ZEN) | Fluorescence | 0.005–100 ng/mL | 0.34 pg/mL for AFB1; ZEN: 0.53 pg/mL for ZEN | Maize | Production of blue- and red-emitting AuNCs for dual-colour simultaneous detection by combining with L-proline and bovine serum albumin. Use of FRET between the AuNCs and WS2 quencher. | [63] |
Au | Detection | Mycotoxin (patulin) | Fluorescence | 0.01–100 ng/mL | 8.5 ng/L | Apple and grape juice | Use of FRET between aptamer@AuNCs (acceptor) and BSA@MnO2 nanoflakes (quencher). | [81] |
Au | Detection | Cocaine | Electrochemistry | 0.001–1.0 ng/mL | Electrochemical impedance spectroscopy, 1.29 pM; differential pulse voltammetry, 2.22 pM | Human serum, urine, saliva | Use of AuNCs@Zr-MOF-based nanosheets. | [82] |
Au | Detection | Estradiol | SERS/RRS | 0.333–5.33 nmol/L (SERS); 0.33–4.00 nmol/L (RRS) | 0.150 nmol/L (SERS); 0.23 nmol/L (RRS) | Urine | Dual-mode SERS and RRS aptasensor. Use of AuNC-loaded COF catalyst. Based on the Apt modulating AuBtPD catalysis with AuNP indicator in the presence of a VB4R molecular probe. | [83] |
Au | Detection | AFB1 | Fluorescence/colourimetry | 5–400 ng/mL for fluorescence; 20–400 ng/mL for colourimetry | 1.91 ng/mL; 12.16 ng/mL for colourimetry | Wheat | Turn-on dual-mode FRET aptasensor. Use of Arg/ATT-AuNCs (donor) and AgNPs (quencher). | [84] |
Au | Detection | Tetracycline | Colourimetry | 1–16 μM | 46 nM | Drug, milk | Use of peroxidase-like AuNC. | [85] |
Au | Detection | Mycotoxin (T-2) | Fluorescence | 0.001−100 ng/mL | 0.57 pg/mL | Maize | Use of the green-emitting AuNCs synthesised by employing rigid host–guest assemblages between ATT and Arg around the AuNCs. Use of FRET between PAA@Arg@ATT-AuNCs (fluorescence donor) and AuNPs (energy receptor). | [86] |
Au | Detection | Staphylococcal enterotoxin B (SEB) | Colourimetry | 1–700 ng/mL | 1.0 × 10−12 g/mL | Corn, rice, flour | Use of peroxidase-like AuNC-chitosan composite membrane. | [87] |
Au | Detection | Kanamycin | Fluorescence | 0.04 nM–7.0 nM | 0.032 nM | Milk | Use of BSA-attached AuNC. | [88] |
Au | Detection | Vancomycin | Fluorescence | 0.01–100 μg/mL | 2.79 ng/mL | Serum, rabbit | Dual-emission biosensor. Use of blue-emitting aggregation-induced emission luminogens and aptamer-modified red-emitting AuNCs–aptamer. | [89] |
Au | Detection | Adenosine | Electrochemistry | 0.1 nM–1 mM | 0.1 nM | Mouse | Real-time target monitoring in vivo. Use of rGOx-AuNC-modified electrode surface. | [90] |
Au | Detection | Salmonella typhimurium | Colourimetry | 101–106 CFU/mL | 1 CFU/mL | Eggshell, egg white | Enabling simultaneous binding of bacteria to both the aptamer@AuNCs and TMB, facilitating peroxidase-like activity due to the increased proximity of these interactions. | [91] |
Au | Detection | Pesticide isocarbophos | SERS/RRS | 1.0 × 10−3–2.5 × 10−2 nmol/L | 4.5 × 10−5 nmol/L | Farmland water | Use of MXene-loaded AuNC catalyst. Dual-mode nanocatalytic indicator reaction with aptamer reaction. | [92] |
Au | Detection | Urea, estradiol, ATP | SERS/RRS | 0.07–3.33 nmol/L for urea; 0.03–3.333 nmol/L for estradiol; 0.01–0.87 nmol/L for ATP | 0.07 nmol/L for urea; 0.006 nmol/L for estradiol; 0.004 nmol/L for ATP | Urine | Dual-mode SERS and RRS aptasensor. Use of an AuNC-doped COF catalyst. | [93] |
Cu | Detection | Oxytetracycline | SERS, RRS | SERS, 37.5–300 ng/L; RRS, 37.5–225 ng/L | SERS, 18.0 ng/L; RRS, 25.0 ng/L | Water | CuNC synthesis under a reduction solution of L-cysteine and NaOH. Use of CuNC catalyst for an AuNP generation reaction. | [95] |
Au+Cu bimetal | Detection | Hg2+ | Fluorescence | 0.1–9.0 μM | 4.92 nM | Porphyra | Use of aptamer-modified AuCu bimetallic NCs, which remained well dispersed in the solution without Hg2⁺ but aggregated upon Hg2⁺ addition to form a T–Hg–T structure, resulting in altered fluorescence intensities due to FRET and visible changes in fluorescent colour. | [96] |
Au+Cu bimetal | Detection | DON | Fluorescence | 5–100 ng/mL | 1.87 ng/mL | Maize flour | FRET-based aptasensor using AuCu bimetallic NCs (donor) and MoS2 nanosheets (quencher). Attachment of NC with a thiol-modified aptamer. | [94] |
Ag+Cu bimetal | Detection | Salmonella typhimurium | Fluorescence | 102–107 CFU/mL | 3.8 CFU/mL | Milk, orange juice, chicken, egg white | NC formation by adding PEI as the polymer template. FRET-based aptasensor using aptamer-attached PEI-AgCu bimetallic NCs (donor) and polydopamine nanospheres (quencher). Combination with a cryonase-based signal amplification method, which splits PEI-AgCu from the aptamer; the release target can repeatedly bind to another aptamer, thereby emitting fluorescence. Cryonase-assisted target cycle signal amplification. | [80] |
Metal | Usage | Analyte | Detection Method | Linear Range | LoD | Sample | Feature | Reference |
---|---|---|---|---|---|---|---|---|
Ag | Detection/imaging | Mucin1 (MUC1) | Fluorescence | 0.1–100 nM | 0.05 nM | MCF-7 cell | Use of scaffold consisting of C-rich template and aptamer with G-rich sequence at the end. | [112] |
Ag | Detection | Potassium ion (K+) | Fluorescence | 0.1 nM–1 mM | 0.06 nM | Vitreous humour | Use of a guanine quartet potassium aptamer sequence and a C12 AgNC sequence. Structural changes in the G-rich aptamer sequence, driving fluorescence changes by simply affecting the C-rich AgNC motif. | [104] |
Ag | Detection/antimicrobial activity | Pseudomonas aeruginosa | Fluorescence | ND | ND | Galleria mellonella larvae | Use of a scaffold to form both the aptamer and the NC-generating region. Antimicrobial activity testing in vitro and in an in vivo animal model. | [65] |
Ag | Detection | Tetracycline (TET) | Fluorescence | 20 ng/mL–10 g/mL | 11.46 ng/mL | Milk | Use of aptamer sequence of TET rich in cytosine and capable of forming a G-quadruplex structure, which also serves as a template for AgNC nucleation. | [97] |
Ag | Detection | Staphylococcal enterotoxin A (SEA) | Fluorescence | 0.5–1000 ng/mL | 0.3393 ng/mL | Milk | Fluorescence quenching by binding to ssDNA aptamer/AgNC using polypyrrole NPs (PPyNPs) and a quencher. Use of the competitive binding interaction between SEA, PyNPs and the aptamer. | [98] |
Ag | Detection | Pb2+ | Fluorescence | 5–50 nM | 3.0 nM | Lake water, tap water | Use of a scaffold with a G-quadruplex aptamer specific for Pb2+ and AgNC templates at both ends. Use of enhanced fluorescence properties by two dark-coloured AgNCs nearby | [99] |
Ag | Detection | T-2 toxin (Fusarium mycotoxin) | Fluorescence | 0.005–500 ng/mL | 0.93 pg/mL | Maize, wheat | Use of a template containing an aptamer and an NC scaffold. Use of FRET between MoS2 nanosheets (fluorescence acceptor) and the aptamer-AgNCs (energy donor). | [64] |
Ag | Detection | ZEN | Fluorescence | 0.01–250 ng/mL | 2 × 10−3 ng/mL | Maize, wheat | Turn-on FRET aptasensor. Use of a scaffold consisting of an AgNC template, an aptamer and a G-rich domain. Use of FRET between the aptamer/AgNCs and porous Fe3O4/C. Fe3O4/C acting on quenching of fluorescence and the easy separation. G-rich domain for fluorescence enhancement. Thirty-day stability. | [100] |
Ag | Detection | Staphylococcus aureus | Electrochemistry | 101–106 CFU/mL | 1.0 CFU/mL | Tap water, river water | Detection of Staphylococcus aureus using an aptamer-based sandwich assay. | [101] |
Ag | Detection | Organic mercury | Fluorescence | 0.05–2.0 μM | 5.0 nM | Water, fish muscle | Use of scaffold consisting of an AgNC template and an organic mercury-recognizing T-rich sequence. | [105] |
Cu | Detection | ATP | Fluorescence | 0.01–10 nM | 5 pM | None | Use of a scaffold consisting of a hairpin stem containing an AT-rich sequence for the formation of a CuNC and an aptamer for ATP binding. Combination of dsDNA-templated CuNCs synthesis with the target-cycling strand displacement amplification for signal amplification. | [73] |
Au+Ag bimetal | Detection | MUC1, carcinoembryonic antigen, cancer antigen 125 | Fluorescence | 1.33–200 ng/mL for MUC1; 6.7 ng/mL–13.3 ug/mL for carcinoembryonic antigen; 2 ng/mL–6.7 ug/mL for cancer antigen 125 | 0.18 ng/mL for MUC1; 3.18 ng/mL for carcinoembryonic antigen; 1.26 ng/mL for cancer antigen 125 | Human serum | Use of a scaffold consisting of the same NC nucleation sequence and different aptamer sequences, exhibiting different emission wavelengths for the detection of three molecules. FRET-based aptasensor using AuAg bimetallic NCs (donor) and GOx nanosheets (quencher). | [59] |
Ag+Cu bimetal | Detection | Kanamycin | Fluorescence | 80 nM–10 μM | 13.3 nM | Tap water, milk | Combination of two split kanamycin aptamers, adding Cu2⁺ and Ag⁺ for a dark reaction, followed by the reducing agent NaBH₄ to form AgCu bimetallic NPs, which produced a weak fluorescent signal that was significantly enhanced in the presence of kanamycin due to the affinity of the aptamers for each other. | [103] |
Ag+Pt bimetal | Detection | Thrombin | Colourimetry | 1–50 nM | 2.6 nM | Human thrombin | Use of co-synthesised bimetallic NCs produced in a DNA template. Use of good peroxidase-like catalytic activity of Pt NC deposited by the galvanic replacement reaction between Ag(0) and Pt(II) on the surface of the AgNCs. | [102] |
Metal | Usage | Analyte | Detection Method | Linear Range | LoD | Sample | Feature | Reference |
---|---|---|---|---|---|---|---|---|
Au | Detection | Deoxynivalenol | Fluorescence/SERS | 0.1–100 ng/mL | Fluorescence, 0.08 ng/mL; SERS, 0.06 ng/ml | Wheat flour | Dual-mode aptasensor. Selection of complementary DNA-modified Au NCs as a fluorescence probe. Use of TAMRA as a Raman label. Use of aptamer-modified Ag NPs/MPDA as the SERS substrate and fluorescence quencher. | [109] |
Ag | Detection | Ochratoxin A (OTA) | Fluorescence | 10–125 nM | 1.3 nM | Maize, wheat | Turn-on FRET aptasensor. Use of aptamer serving as both the recognition and quenching reagent. Screening of scaffold sequences for emitting or quenching fluorescence. Detection time of 45 min. | [106] |
Ag | Detection/antimicrobial activity | Staphylococcus aureus, Escherichia coli | Fluorescence | 1 × 107–1 × 1011 CFU/mL | ND | Milk | Use of AgNC bound with hybrid DNA of NC scaffold and bacteria-specific aptamer. Use of the antibacterial effect of AgNC. Enhanced AgNC fluorescence via electrospinning to PLA, forming nanofilms. | [107] |
Ag | Detection | Adenosine | Fluorescence | 0–200 μM | 2.7 μM | Human serum | Use of aptamer kissing module system using loop–loop interactions. Binding of adenosine to aptamer to form a loop structure, binding via kissing interaction to an oligo with AgNC sequence and fluorescence expression due to the proximity of a G-rich overhang on the AgNC side through the binding of a complementary stem. Hybridisation-induced signal-switching system. | [108] |
Cu | Detection | ZEN | Fluorescence | 10−1–103 ng/mL | 0.1 ng/mL | Water | Dual-signal amplification mechanism based on TdT amplification and CuNC fluorescence enhancement | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-B.; Kim, S.-H.; Yoo, S.-M. Recent Advances of Strategies and Applications in Aptamer-Combined Metal Nanocluster Biosensing Systems. Biosensors 2024, 14, 625. https://doi.org/10.3390/bios14120625
Kim K-B, Kim S-H, Yoo S-M. Recent Advances of Strategies and Applications in Aptamer-Combined Metal Nanocluster Biosensing Systems. Biosensors. 2024; 14(12):625. https://doi.org/10.3390/bios14120625
Chicago/Turabian StyleKim, Ki-Beom, Sang-Ho Kim, and Seung-Min Yoo. 2024. "Recent Advances of Strategies and Applications in Aptamer-Combined Metal Nanocluster Biosensing Systems" Biosensors 14, no. 12: 625. https://doi.org/10.3390/bios14120625
APA StyleKim, K.-B., Kim, S.-H., & Yoo, S.-M. (2024). Recent Advances of Strategies and Applications in Aptamer-Combined Metal Nanocluster Biosensing Systems. Biosensors, 14(12), 625. https://doi.org/10.3390/bios14120625