Real-Time Monitoring of a Nucleic Acid Amplification Reaction Using a Mass Sensor Based on a Quartz-Crystal Microbalance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. QCM Device
2.3. RPA Reaction Design
2.4. Immobilization of DNA Primer to QCM Sensor
2.5. Preparation of the RPA Reaction Solution
2.6. Observation of RPA Reaction on QCM
2.7. Confirmation of RPA Products by Electrophoresis
2.8. Quantification of RPA Products by Fluorescence Measurements
3. Results and Discussion
3.1. RPA Reaction Monitoring on a QCM Plate
3.2. Effect of Primer DNA Displayed on the Plate
3.3. Factor-Separation Experiments
3.4. Concentration and Temperature of RPA Reaction Solution for QCM Measurements
3.5. Identification of the Cause of the Mass Increase on the QCM Plate
3.6. Estimation of Detected Concentrations of RPA Products
3.7. RPA Reaction Detection in a Lab-Made QCM Device
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garibyan, L.; Avashia, N. Polymerase chain reaction. J. Investig. Dermatol. 2013, 133, e6. [Google Scholar] [CrossRef] [PubMed]
- Hashim, H.O.; Al-Shuhaib, M.B.S. Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: A review. J. Appl. Biotechnol. Rep. 2019, 6, 137–144. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in chemical and biological methods to identify microorganisms-from past to present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Holst-Jensen, A.; Rønning, S.B.; Løvseth, A.; Berdal, K.G. PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal. Bioanal. Chem. 2003, 375, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Jiang, Y.; Cao, X.; Liu, C.; Zhang, N.; Shi, D. Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases. Clin. Chim. Acta 2021, 517, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Artika, I.M.; Dewi, Y.P.; Nainggolan, I.M.; Siregar, J.E.; Antonjaya, U. Real-time polymerase chain reaction: Current techniques, applications, and role in COVID-19 diagnosis. Genes 2022, 13, 2387. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Takahara, T.; Doi, H.; Shibata, N.; Yamanaka, H. The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection. Environ. DNA 2019, 1, 99–108. [Google Scholar] [CrossRef]
- Shu, L.; Ludwig, A.; Peng, Z. Standards for methods utilizing environmental DNA for detection of fish species. Genes 2020, 11, 296. [Google Scholar] [CrossRef]
- Iwaya, T.; Endo, F.; Takahashi, F.; Tokino, T.; Sasaki, Y.; Nishizuka, S.S. Frequent tumor burden monitoring of esophageal squamous cell carcinoma with circulating tumor DNA using individually designed digital polymerase chain reaction. Gastroenterology 2021, 160, 463–465.e4. [Google Scholar] [CrossRef]
- Tamura, D.; Abe, M.; Hiraki, H.; Sasaki, N.; Yashima-Abo, A.; Ikarashi, D.; Kato, R.; Kato, Y.; Maekawa, S.; Kanehira, M.; et al. Postoperative recurrence detection using individualized circulating tumor DNA in upper tract urothelial carcinoma. Cancer Sci. 2024, 115, 529–539. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR past, present and future. BioTechniques 2020, 69, 317–325. [Google Scholar] [CrossRef]
- Leonardo, S.; Toldrà, A.; Campàs, M. Biosensors based on isothermal DNA amplification for bacterial detection in food safety and environmental monitoring. Sensors 2021, 21, 602. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Gao, Z. Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal. Chim. Acta 2015, 853, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. TrAC Trends Anal. Chem. 2018, 98, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, C.; Dhar, A.; Pavletich, N.P. Mechanism of strand exchange from RecA-DNA synaptic and D-loop structures. Nature 2020, 586, 801–806. [Google Scholar] [CrossRef]
- Sabei, A.; Prentiss, M.; Prévost, C. Modeling the homologous recombination process: Methods, successes and challenges. Int. J. Mol. Sci. 2023, 24, 14896. [Google Scholar] [CrossRef]
- Marx, K.A. Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution−surface interface. Biomacromolecules 2003, 4, 1099–1120. [Google Scholar] [CrossRef]
- Becker, B.; Cooper, M.A. A survey of the 2006–2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 2011, 24, 754–787. [Google Scholar] [CrossRef]
- Skládal, P. Piezoelectric biosensors. TrAC Trends Anal. Chem. 2016, 79, 127–133. [Google Scholar] [CrossRef]
- Jandas, P.J.; Prabakaran, K.; Luo, J.; MG, D.H. Effective utilization of quartz crystal microbalance as a tool for biosensing applications. Sens. Actuator A 2021, 331, 113020. [Google Scholar] [CrossRef]
- Okahata, Y.; Niikura, K.; Furusawa, H.; Matsuno, H. A highly sensitive 27 MHz quartz-Crystal Microbalance as a device for kinetic measurements of molecular recognition on DNA strands. Anal. Sci. 2000, 16, 1113–1119. [Google Scholar] [CrossRef]
- Ozeki, T.; Morita, M.; Yoshimine, H.; Furusawa, H.; Okahata, Y. Hydration and energy dissipation measurements of biomolecules on a piezoelectric quartz oscillator by admittance analyses. Anal. Chem. 2007, 79, 79–88. [Google Scholar] [CrossRef]
- Yazawa, K.; Furusawa, H.; Okahata, Y. Real-time monitoring of intermediates reveals the reaction pathway in the thiol-disulfide exchange between disulfide bond formation protein A (DsbA) and B (DsbB) on a membrane-immobilized quartz crystal microbalance (QCM) system. J. Biol. Chem. 2013, 288, 35969–35981. [Google Scholar] [CrossRef]
- Yoshimine, H.; Sasaki, K.; Furusawa, H. Pocketable biosensor based on quartz-crystal microbalance and its application to DNA detection. Sensors 2022, 23, 281. [Google Scholar] [CrossRef]
- Furusawa, H.; Tsuyuki, Y.; Takahashi, S.; Okahata, Y. In situ monitoring of structural changes during formation of 30S translation initiation complex by energy dissipation measurement using 27-MHz quartz-crystal microbalance. Anal. Chem. 2014, 86, 5406–5415. [Google Scholar] [CrossRef] [PubMed]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumagai, H.; Furusawa, H. Real-Time Monitoring of a Nucleic Acid Amplification Reaction Using a Mass Sensor Based on a Quartz-Crystal Microbalance. Biosensors 2024, 14, 155. https://doi.org/10.3390/bios14040155
Kumagai H, Furusawa H. Real-Time Monitoring of a Nucleic Acid Amplification Reaction Using a Mass Sensor Based on a Quartz-Crystal Microbalance. Biosensors. 2024; 14(4):155. https://doi.org/10.3390/bios14040155
Chicago/Turabian StyleKumagai, Hideto, and Hiroyuki Furusawa. 2024. "Real-Time Monitoring of a Nucleic Acid Amplification Reaction Using a Mass Sensor Based on a Quartz-Crystal Microbalance" Biosensors 14, no. 4: 155. https://doi.org/10.3390/bios14040155
APA StyleKumagai, H., & Furusawa, H. (2024). Real-Time Monitoring of a Nucleic Acid Amplification Reaction Using a Mass Sensor Based on a Quartz-Crystal Microbalance. Biosensors, 14(4), 155. https://doi.org/10.3390/bios14040155